
The Exact Expressive Power of
Fixed-Precision Looped Padded Transformers

Anej Svete1,2* Will Merrill2 Ashish Sabharwal2
1ETH Zürich 2Allen Institute for AI

asvete@inf.ethz.ch

Abstract

We establish the exact expressivity of fixed-precision looped padded transformers. With OplogNq

width, logd N depth, and polypNq padding (in input length N), they are equivalent to L-uniform ACd

circuits. This extends recent results showing the equivalence of transformers with OplogNq precision,
logd N depth, and polypNq padding to FO-uniform TCd. Our result exposes fixed precision’s expressivity
cost: A drop from TCd to ACd due to inability to compute threshold functions.

1 Introduction

Transformers are the foundational architecture of modern language models. Understanding their compu-
tational expressivity—what they can and cannot compute—is important for both theoretical insights and
practical applications. Recent work has described transformer expressivity with circuit complexity, revealing
tight connections between transformer architectures and parallel computation models (Merrill & Sabharwal,
2023; Li et al., 2024; London & Kanade, 2025; Merrill & Sabharwal, 2025a, inter alia).

Fixed-Precision
Looped Padded
Transformers

Log-Precision
Looped Padded
Transformers

Fixed-Precision
Padded

Transformers

Log-Precision
Padded

Transformers

NCTCdACdTC0AC0

logd N depth
polypNq padding

Merrill & Sabharwal (2025a)

logd N depth
polypNq padding

This work (Thm. 3.4)

constant depth
polypNq padding

London & Kanade (2025)

constant depth
polypNq padding

Merrill & Sabharwal (2025a)

d ě 1 d Ñ 8

Expressivity gapExpressivity gap

Figure 1: The landscape of transformer expressivity across precision and depth regimes. Colored boxes
represent transformer computational models (fixed-precision transformers are L-uniform); brown boxes
represent FO-uniform complexity classes while gray boxes represent L-uniform subclasses. Two-sided arrows
(X Ø Y) indicate equality; hooked arrows (X ãÑ Y) indicate (non-strict) inclusion of X in Y .

Different choices in how numerical precision, width, and depth scale with context length can fundamen-
tally affect the computational power of transformers. To distinguish N input positions, a transformer must
compute at least N distinct representations, requiring p ¨ D “ ΩplogNq, where p is numerical precision

* This research was conducted while interning at the Allen Institute for AI.

1

mailto:asvete@inf.ethz.ch

(bits per value) and D is width. Different ways of satisfying this constraint lead to different computational
models, and it remains unclear which best characterizes practical transformers. Prior work has characterized
logarithmic-precision transformers with constant width, i.e., p “ ΘplogNq and D “ Θp1q. Merrill & Sab-
harwal (2025a) show that such transformers with OplogdNq depth and polynomial padding are equivalent to
FO-uniform TCd for d ě 1, the class of (log-space uniform) threshold circuits of depth OplogdNq.1

These results do not directly carry over to the fixed-precision regime, i.e., p “ Θp1q and D “ ΘplogNq.
Fixed precision requires information such as counts and pointers to positions in the input string to be stored
in a “distributed” manner across dimensions, rather than concentrated into individual values. This makes it
difficult for the model to perform basic arithmetic with counts and pointer values, and limits expressivity
compared to log-precision transformers: While log-precision transformers can compute certain TC0 functions,
constant-precision transformers with logarithmic width (with or without polynomial padding) fall within
AC0 (Li et al., 2024; London & Kanade, 2025). However, a complete characterization of the expressivity of
fixed-precision looped padded transformers remains open, and is the focus of this work.

In this work, we describe the exact expressivity of fixed-precision looped padded transformers, focusing
on the role of precision and width. The dependence of model width on context size means that we construct
a separate transformer for each input length. This calls for some caution: in principle, we could hard-code a
different transformer for each input length, leading to unrealistic models.2 Therefore, we study the scaling of
transformer width with L-uniform transformers (London & Kanade, 2025). This enforces that the transformers
can be built by a realistic computational model—a logarithmic-space Turing machine. Our main result shows
that such transformers with logdN looping and polypNq padding are equivalent to L-uniform ACd circuits,
which is believed to be a strictly weaker class than the FO-uniform TCd characterized by Merrill & Sabharwal
(2025a) for the log-precision case. We find the inclusion of the L-uniform positional encodings to be
particularly important, as they enable fixed-precision transformers to use positional information that they
themselves could not compute. As d increases, fixed-precision transformers approach NC “

Ť

dě0 AC
d, but

remain strictly weaker than their log-precision counterparts matched for depth (assuming ACd ‰ TCd). Fig. 1
summarizes this landscape across different precision and depth regimes, positioning our contribution alongside
prior work showing that log-precision transformers achieve FO-uniform TCd (Merrill & Sabharwal, 2025a)
and that constant-depth fixed-precision transformers achieve L-uniform AC0 (London & Kanade, 2025).

2 Preliminaries

2.1 Notation

Let Σ be an alphabet, a finite set of symbols. A language L is a subset of Σ˚ def
“

Ť

NPNΣN , the set of
all strings. We denote the concatentation of two strings w1,w2 P Σ˚ as w1 ˝ w2 or simply w1w2. A
language recognizer is a function R : Σ˚ Ñ t0, 1u, where 0 and 1 are designated reject and accept symbols.
R’s language is LpRq

def
“ tw P Σ˚ | Rpwq “ 1u. Two recognizers R1 and R2 are equivalent if and only

if LpR1q “ LpR2q. We use polypNq
def
“ tf : N Ñ N | DK ą 0, fpNq “ OpNKqu to denote the set of

functions with at most polynomial growth rate.
1In contrast, fixed-depth (d “ 0) log-precision transformers are equivalent to FO-uniform TC0 (Merrill & Sabharwal, 2025a).
2Without a uniformity constraint, circuit families (and thus transformer families) become unrealistically powerful. For example,

consider the unary language t1N | the N th Turing machine haltsu under some fixed enumeration of Turing machines. This
undecidable language is recognizable by a non-uniform AC0 circuit family, since we can hard-code the correct answer for each input
length N into the circuit CN . Uniformity conditions prevent such pathological cases by requiring a single, feasible algorithm to
construct all circuits in the family.

2

2.2 Circuit Complexity

Computational circuits are a model of parallel computation. They have been widely used in the study of the
expressivity of neural networks. Circuits process binary input strings through a series of logical operations
to produce binary outputs.3 Formally, a boolean circuit is a directed acyclic graph where source nodes
represent the N-bit input, and a single sink node represents the output. Non-source vertices are called gates
and are labeled with logical operations (e.g., AND, OR, NOT). The size of a circuit is the number of gates, and
its depth is the longest path from any input to the output.

Circuit families process input strings of variable length. A circuit family is a sequence of circuits
C def

“ tCNuNPN where CN processes inputs of length N . A circuit family is said to recognize a language if
for any given input string, the corresponding circuit outputs 1 if and only if the string is in the language.

A circuit complexity class is a set of circuit families that satisfy certain constraints on size, depth, and
the types of gates used. This paper focuses on two common classes:

• ACd: Circuits with NOT, AND, and OR gates that have unbounded fan-in and depth OplogdNq.
• TCd: The extension of ACd that adds threshold gates, which output 1 if the sum of their inputs exceeds

a given threshold. It is known that AC0 Ĺ TC0 and ACd Ď TCd. For example, PARITY, the language of
binary strings with an even number of 1s, is in TC0 but not in AC0 (Furst et al., 1984).

Without additional constraints, circuit families can recognize undecidable languages by having arbitrary,
“hard-coded” solutions for each input length. To avoid this and ensure the model of computation is realistic,
we can impose a uniformity condition. A circuit family is uniform if there exists a Turing machine that,
given an input of 1N , can generate a description of the circuit CN . In particular, a circuit class is L-uniform
if a Turing machine using OplogNq space can construct its description from the input 1N . This ensures the
circuits for different input lengths are related by a systematic procedure.

2.3 Finite-precision Fixed-point Arithmetic

Our computation models perform operations with finite-precision fixed-point arithmetic (Li et al., 2024;
Saunshi et al., 2025; London & Kanade, 2025).

Definition 2.1 (Fixed-point representation). Let p P N be the number of bits devoted to each of the integer
and fractional parts. We use Fp to denote the set

Fp
def
“ tx˘ ¨ a ¨ 2´p | x˘ P t´1, 1u, a P t0, 1, . . . , 22p ´ 1uu (1)

We define BF
def
“ maxFp “ 2p ´ 2´p. All values exceeding BF are considered out of range and are

rounded to BF. Note, however, that BF does not behave like infinity—it does not “consume” all subsequent
operations. For example, for any non-negative x P Fp, BF ´ x ‰ BF is a valid number.

To handle the results of arithmetic operations that may not be exactly representable in the fixed-point
format, we define a standard for rounding.

Definition 2.2 (Rounding). For any x P R and any closed subset F of R containing 0, we define roundpx,Fq

as the closest number to x in F. In case of a tie, the value with the smaller absolute value is chosen.

We denote the rounding operation as r¨sp
def
“ roundp¨,Fpq. This operation is applied to vectors and

matrices element-wise. All binary operations are defined by first performing the ideal mathematical operation
and then rounding the result to the nearest representable value in Fp. Division by zero is considered an error
condition resulting in an incorrect output. We also note that BF{2 “ 2p´1 ´ 2´p.

For operations involving more than two numbers, rounding is applied iteratively.
3By representing symbols from any alphabet with binary encodings, circuits (or circuit functions) can be used to process strings

over any finite alphabet. We focus on binary strings for simplicity.

3

Definition 2.3 (Summation with iterative rounding). For p, N P N and x P RN , we define summation with
iterative rounding to p fractional bits as the function SUMp :

Ť

NPNpFpqN Ñ Fp, where for any N P N` and
x P pFpqN :

SUMppxq
def
“

„

. . .
”

rx1 ` x2sp ` x3

ı

p
` ¨ ¨ ¨ ` xN

ȷ

p

(2)

This iterative rounding process is not associative and the order of operations can affect the final result.
Based on this, we can also define more complex operations such as the fixed-point inner product xx,yyp

def
“

SUMppx d yq, where d denotes the element-wise product of two vectors, and fixed-point matrix product
for matrices A and B, where pAˆpBqi,j

def
“ xpAi,:q

J,B:,jyp. These operations will be used in the definition
of fixed-precision transformers in §2.4.

2.4 Transformers and Transformer Families

For a fixed input length N P N, a transformer TN consists of:
(1) a symbol embedding e : Σ Ñ FD for w P Σ,
(2) a positional encoding p : N ˆ N Ñ FD,
(3) L layers τ p1q, . . . , τ pLq, each of which consists of two sub-layers: A self-attention layer and a position-

wise fully-connected feed-forward network f ,4 and
(4) a classification output layer o of the form o : FD Ñ t0, 1u.

Each layer has its own parameters and is indexed by the layer name and the depth for attention and feedforward
layers. We use D to denote the width of a transformer. A transformer with layers τ p1q, . . . , τ pLq computes
h

plq
n P FD for l P t1, . . . , Lu and each position n P rN s in the input string w “ w1 ¨ ¨ ¨wN P Σ˚ as follows:5

hp0q
n

def
“ epwnq ` ppn,Nq P FD for n P rN s (3a)

Hplq def
“

´

h
plqJ

1 ¨ ¨ ¨ h
plqJ

N

¯J

P FNˆD (3b)

Qplq def
“ HplqW

plq
Q , Kplq def

“ HplqW
plq
K , V plq def

“ HplqW
plq
V P FNˆD (3c)

Gplq def
“ softmaxpQplqKplqJqV plq ` Hplq P FNˆD (3d)

Hpl`1q def
“ Gplq ` fpGplqq P FNˆD (3e)

We say that the lth layer τ plq computes the function τ plq : FNˆD Ñ FNˆD, defined as τ plq : Hpl´1q ÞÑ Hplq

for l P t1, . . . , Lu. We also denote with T the function T : Σ˚ Ñ FNˆD, defined as T : w ÞÑ HpLq.
We focus on constant-precision logarithmic-width transformers. Thus, all operations in the transformer

architecture are defined using fixed-point arithmetic from §2.3 for some fixed p P N. This both limits what
can be computed as well as enables the construction of various theoretical gadgets that leverage the bounded
precision to implement logical operations and attention patterns. These are collected in §A. The proofs of our
main results in §3 then use these higher-level constructions to implement the necessary computations for
simulating circuit classes with fixed-precision transformers and vice versa.

Analogously to circuit families, each string length N is processed by a separate transformer model. To
process all of Σ˚, we therefore define a transformer family tTNu as a sequence of transformers where each
TN processes strings of length N . Further, we again impose a uniformity condition on the family, which will
relate the transformers for different input lengths.

4We focus on single-head self-attention for simplicity.
5Note that we ignore layer normalization in our analysis, similar to London & Kanade (2025).

4

Definition 2.4 (Uniform transformer families; variant of London & Kanade, 2025, Def. 3.6). Let X be a
computational complexity class. A transformer family tTNu is X-uniform if there exist Turing machines M1

and M2 whose resource usage is constrained by the complexity class X such that:
(1) M1 takes input 1N and outputs a description of TN , and
(2) M2 takes input p1N , Bpnqq and outputs ppn,Nq.

Def. 2.4 allows for size-dependent transformers while keeping them closely related (as the same Turing
machines must construct them for all N). It also facilitates natural connections with uniform circuit classes
(cf. §2.2) (London & Kanade, 2025). All our results concern L-uniform transformer families, in which case,
the Turing machines in Def. 2.4 operate in logarithmic space. We discuss other notions of uniformity in §4.

Information-rich positional encodings. Def. 2.4 defines two components of a transformer based on
the notion of uniform computability: The transformer model itself and the positional encoding. Although
superficially similar, these two components appear in distinctly different roles in our constructions. The
transformer model intuitively defines the “algorithm” that processes the input string and is limited in terms of
the operations to those implementable by the fixed-precision attention mechanism. For example, although
it is constructed by a logarithmic space Turing machine, it cannot compute arbitrary logarithmic-space
functions but rather (a subset of) AC0 functions (London & Kanade, 2025). The positional encodings, in
contrast, provide a way to inject additional information into the model that it cannot compute itself. They
can, for example, provide direct access to the binary representation of the position index n, and pre-compute
arithmetic operations such as division and modulo. This way, positional encodings provide the transformer
with information that it cannot necessarily compute itself, but that is still computable in logarithmic space.

Language recognition. We treat a transformer T as a language encoder—a length-preserving function
Σ˚ Ñ pFDq˚ (Chan et al., 2025; Cotterell et al., 2024)—and regard the output HpLq on a (possibly padded)
string w as a |w| ˆ D matrix, where each row corresponds to the contextual representation of the symbol at
the corresponding position. To convert this into a language recognizer, we use the output layer o that maps
the contextual representation of the final symbol to the membership (classification) decision 0 or 1.

2.5 Looped Padded Transformers

Looped (or universal) transformers use a fixed block of transformer layers that is applied repeatedly to the
input string (Dehghani et al., 2019; Giannou et al., 2023; Hao et al., 2024; Goyal et al., 2024; Chen et al.,
2025; Zeng et al., 2025; Geiping et al., 2025). This increases the depth of the model, enabling more complex
reasoning by applying layers multiple times, and does not increase the model size, as the same block is reused
for each iteration, thus reducing the memory footprint and computational cost (Bae et al., 2025). We define
looped transformers as follows.

Definition 2.5 (Looped transformer). Let L, T P N and let 1 ď l1 ď l2 ď L. Given a depth-L transformer, a
looped transformer computes symbol contextual representations H by

(1.) Computing the initial hidden states Hp0q for the input string w “ w1 ¨ ¨ ¨wN and computing Hpl1q as
with the first l1 layers of the transformer

(2.) Applying the transformer layers l1`1, . . . , l2 T times to the hidden states Hpl1q to obtain Hpl1`T pl2´l1qq.
(3.) Applying the transformer layers l2 ` 1, . . . , L to the hidden states Hpl1`T pl2´l1qq to obtain the final

representations H that are passed to the output layer.

The dynamic computational depth of looped transformers endows them with the ability to perform more
complex reasoning tasks by iteratively refining their hidden states over multiple timesteps. Importantly,

5

these reasoning steps include both sequential and parallel processing of the input symbols, allowing for both
parallel efficiency as well as depth in the reasoning process.

Padded transformers additionally pad the input string with padding (pause) symbols (Pfau et al., 2024;
Goyal et al., 2024; London & Kanade, 2025).

Definition 2.6 (Padded Transformer). Given P P N, a padded transformer T transformer computes the
contextual representations H of a string w P Σ˚ by processing the padded input w ˝ ˝ ¨ ¨ ¨ ˝

loomoon

P

(possibly by

looping, cf. Def. 2.5), where ˝ R Σ is a designated padding symbol.

Instead of being restricted to the contextual representations of the N input symbols, a padded transformer
can determine string membership or symbol probabilities based on the contextual representations of the P
additional padded symbols as well. This additional space can be used to perform more operations and is
analogous to increasing the circuit width in circuit complexity.

Notation. We use the shorthand LPT for looped padded transformers. We denote the class of LPTs with
(1) p bits of precision, (2) model width D, (3) P padding symbols, and (4) T iterations, as LPTrp, D, P, T s.
We are particularly interested in the L-uniform family (cf. Def. 2.4), i.e., L-uniform LPTrp, D, P, T s. When
it is clear from the context, LPTrp, D, P, T s will also refer to the class of languages recognized by such
transformers. Particularly important special cases for this paper are the following:

(1) the class of constant-depth (T “ Θp1q) and polynomially padded (P “ polypNq) transformers with
constant precision (p “ Θp1q) and logarithmic width (D “ OplogNq)—we denote this class with
LPT0

def
“ LPTrΘp1q,OplogNq, polypNq,Θp1qs (this corresponds to the transformer family studied by

London & Kanade (2025)), and,
(2) the class of polylogarithmically looped (T “ OplogdNq for some d P N) and polynomially padded

(P “ polypNq) transformers with constant precision (p “ Θp1q) and logarithmic width (D “

OplogNq)—we denote this class with LPTd
def
“ LPTrΘp1q,OplogNq, polypNq,OplogdNqs.

Padding and looping together increase the expressivity of transformers.

Remark 1 (LPT expressivity). The following characterizations of LPT expressivity are known:
(1) Recognition of regular languages Reg:

• Reg Ď L-uniform LPTrΘp1q,OplogNq, 0,OplogNqs (Saunshi et al., 2025, Thm. 5.1),
• Reg Ď non-uniform LPTrOplogNq,Θp1q, 0,OplogNqs (Liu et al., 2023), and,
• Reg Ď Fully uniform LPTrOplogNq,Θp1q, 0,OplogNqs (Merrill & Sabharwal, 2025b),

(2) L-uniform LPTrOplogNq,OplogNq, polypNq,Θp1qs “ L-uniform TC0 (London & Kanade, 2025,
Thm. 4.5),

(3) Fully uniform LPTrOplogNq,Θp1q, polypNq,OplogdNqs “ FO-uniform TCd for d ě 0 (Merrill &
Sabharwal, 2025a, Thms. 1 and 3),

(4) L-uniform LPT0 “ L-uniform AC0 (London & Kanade, 2025, Thm. 4.1),

3 Exact Characterization of L-uniform LPTd

This section shows the equivalence between fixed-precision looped transformers with logarithmic depth
and polynomial padding, and logarithmic depth circuits; L-uniform LPTd “ L-uniform ACd. The structure
closely follows that of Merrill & Sabharwal (2025a), who show the analogous result for logarithmic-precision
transformers and FO-uniform TCd. We break the proof into two parts:

1. We first show the inclusion of transformer class in the circuit class, namely L-uniform LPTd Ď

L-uniform ACd, based on existing expressivity results (§3.1).

6

2. The other direction—L-uniform ACd Ď L-uniform LPTd—is more involved. The case d “ 0 is shown
by London & Kanade (2025), so we focus on d ě 1, which we show in four steps:

(1) We first discuss the notion of completeness under reductions as first introduced by Merrill &
Sabharwal (2025a) for the log-precision case. We extend to the constant-precision case their
result that if a transformer can recognize a language complete for a class C under reductions
in class R and can also compute every R reduction, then it can recognize every language in C
(§3.2.1).

(2) Second, we show that NL Ď L-uniform LPT1, which tells us that logaritmic-depth transformers
can compute L reductions (§3.2.2).

(3) Third, we introduce a version of the circuit evaluation problem and show that the evaluation of
ACd circuits is complete for L-uniform ACd under L reductions (Def. 3.4).

(4) Finally, we show that L-uniform LPTd can solve the ACd circuit evaluation problem, thus complet-
ing the proof that L-uniform ACd Ď L-uniform LPTd (§3.2.3).

3.1 Upper Bound: L-uniform LPTd Ď L-uniform ACd

Theorem 3.1 (Analog of Merrill & Sabharwal, 2025a, Lem. 4). For any d ě 0, L-uniform LPTd Ď L-uniform ACd.

Proof. The proof is identical to the one of Merrill & Sabharwal (2025a), swapping TCd with ACd and using
the fact that L-uniform LPT0 “ L-uniform AC0 (London & Kanade, 2025, Thm. 4.1).

■

3.2 Lower Bound: L-uniform LPTd Ě L-uniform ACd

This section shows the other direction of Thm. 3.1: L-uniform ACd Ď L-uniform LPTd. To do so, we leverage
the recent technique of reductions within padded transformers (Merrill & Sabharwal, 2025a). This then
allows us to use the known expressivity results on transformer and combine them into the desired result.

3.2.1 Transformers Can Make Use of Reductions

Merrill & Sabharwal (2025a) show how to use the standard notions of completeness of a language for a
complexity class under certain types of reduction in order to reason about transformer expressivity. We first
recall the formal framework for discussing reductions in the context of transformers based on their definitions,
and then extend their results to our setting.

Definition 3.1 (Merrill & Sabharwal, 2025a, Def. 9). Let R be a class of languages. We say a transduction
t : Σ˚ Ñ Σ˚ is an R reduction if |tpwq| is polynomial in |w| and the language Lt “ tpw, Bpnq, wq |

tpwqn “ wu is in R.6

A transformer computes a reduction t if it recognizes Lt. However, since transformers can output a
symbol in Σ instead of 1{0, it is more natural to require the transformer to compute a functional form of this
language, namely compute rtpw, nq defined as tpwqn. Our constructions work under both views, though the
latter is often more natural and efficient. Formally:

Definition 3.2 (Merrill & Sabharwal, 2025a, Def. 10). We say that a transformer family computes an R
reduction t if it either recognizes the language Lt “ tpw, Bpnq, wq | tpwqn “ wu in R or computes the
function r : 1˚Σ ˆ t0, 1u˚ Ñ Σ defined as rtpw, Bpnqq “ tpwqn.

6Here tpwqn denotes the nth symbol of tpwq if n ď |tpwq|, and a special symbol ˝ R Σ otherwise.

7

At a high level, the following lemma shows that transformers can make use of reductions to recognize
any language in a complexity class if they can recognize a language complete for that class and can compute
every reduction in the relevant class.

Lemma 3.1 (Analog of Merrill & Sabharwal, 2025a, Lem. 3). Let C,R be classes of languages. Let lan-
guage L be C-complete under R reductions. If L P L-uniform LPTd and L-uniform LPTd can compute every
R reduction, then C Ď L-uniform LPTd.

Proof. The proof is identical to that of Merrill & Sabharwal, 2025a, Lem. 3 with one difference that we
highlight here. The construction with log-precision transformers divides the polynomially-sized padding
space into blocks of size B “ NK`1 for some K P N. It then relies on the layer hash norm to compute, for
each padding position n, the number r of the padding block n is in. Fixed-precision transformers, however,
cannot compute the layer hash norm. Luckily, the information computed by the layer hash norm only depends
on the positions, meaning that it can be precomputed in the positional encodings. We therefore provide the
transformer with the logspace-computable positional encodings that include the binary encodings of n{NK`1,
which will allow the transformer to attend to individual blocks as per Lem. A.4.

■

3.2.2 Lower Bound: NL Ď L-uniform LPT1

We now show that padded log-depth transformers can recognize any language in NL. To do so, we first show
that the graph connectivity problem is solvable by logarithmic-depth transformers.

Theorem 3.2 (Analog of Merrill & Sabharwal, 2025b, Thm. 2). There exists an L-uniform family of LPTd

transformers tTNuNPN such that TN solves connectivity on (directed or undirected) graphs over N vertices:
Given the N ˆ N adjacency matrix of a graph G, N3 padding positions, and s, t P rN s in binary, TN checks
whether G has a path from vertex s to vertex t.

Proof. We consider a directed graph G over N vertices and follow the construction from Merrill & Sabharwal,
2025b, Thm. 2. We again only highlight the differences in the construction.

Let A P t0, 1uNˆN be G’s adjacency matrix. The input to the transformer is the adjacency matrix A
represented using N2 positions from t0, 1u, followed by N3 padding positions ˝, and finally the source and
target nodes s, t P t1, . . . , Nu. In contrast to Merrill & Sabharwal, 2025b, Thm. 2, s and t are represented in
binary with rlogN s bits each:

A1,1 . . . AN,N ˝ . . . ˝
loomoon

N3

& Bpsq & Bptq (4)

In contrast to Merrill & Sabharwal, 2025b, Thm. 2, we cannot rely on the layer hash norm to identify
positions. To account for that, we provide the transformer with the following positional encodings.

PEpn,Nq
def
“

¨

˚

˚

˚

˚

˚

˚

˝

B˘pnq

B˘pn mod Nq

B˘pn{Nq

B˘pn1q

B˘pn1 mod Nq

B˘pn
1
{N2q

˛

‹

‹

‹

‹

‹

‹

‚

P t0, 1u
OplogpNqq. (5)

where n1 def
“ maxp0, n ´ N2q. Bpnq denotes the binary encoding of n using rlogN s bits and B˘pnq denotes

the signed binary encoding 2Bpnq´1, where 1 is the rlogN s-dimensional vector of all ones. These positional
encodings can be computed in logspace.

8

TN first uses rlogN s ` 1 layers to read the binary encodings of the source and target nodes s and t
stored in the string into a single dimension in the residual stream with the L-uniform construction from
Lem. A.6. This provides TN with enough information to attend to appropriate positions in the subsequent
layers, meaning that the construction can follow that of the L-uniform Merrill & Sabharwal, 2025b, Thm. 2
from here on.

■

We combine Thm. 3.2 with Lem. 3.1 for the following analog to Merrill & Sabharwal, 2025a, Thm. 2.

Theorem 3.3 (Analog of Merrill & Sabharwal, 2025a, Thm. 2). NL Ď L-uniform LPT1.

Proof. We follow the proof of Merrill & Sabharwal, 2025a, Thm. 2. Let L be the graph connectivity problem,
class C be NL, and class R be FO. We will show that the preconditions of Lem. 3.1 are met, which will give
us NL Ď L-uniform LPT1:

1. First, graph connectivity is known to be NL-complete under FO reductions (Immerman, 1999).
2. Second, Thm. 3.2 shows that log-depth transformers with cubic padding can recognize the graph

connectivity problem L, i.e., L P L-uniform LPT1.
3. Finally, London & Kanade, 2025, Thm. 4.1 shows that L-uniform LPT0 “ L-uniform AC0. Since

L-uniform AC0 Ě FO-uniform AC0 “ FO (Mix Barrington et al., 1990), L-uniform LPT0 can recognize
languages in FO and can therefore compute FO reductions.

Thus, Lem. 3.1 applies. ■

3.2.3 Lower Bound: L-uniform ACd Ď L-uniform LPTd

We are finally ready to conclude the proof of the equivalence L-uniform LPTd “ L-uniform ACd by showing
that L-uniform ACd Ď L-uniform LPTd. To do so, we use Lem. 3.1 again, coupled with the fact that
NL Ď L-uniform LPT1. Concretely, we use the completeness of the ACd circuit evaluation problem under NL
reductions for the class L-uniform ACd (Lem. 3.2) together with the fact that transformers can evaluate ACd

circuits (Lem. 3.4). This section adapts Merrill & Sabharwal, 2025a, App. B to the LPTd and ACd setting.

Circuit evaluation. The circuit simulation problem receives a string and a description of a circuit and
returns the value of that circuit on the input string. We use the following representation of an ACd circuit,
which differs from that of Merrill & Sabharwal (2025a) in two aspects discussed shortly.

Definition 3.3 (Circuit encoding). Let C be an ACd circuit over N inputs. We define the following encoding

xCy
def
“ X . . . X

looooomooooon

N times

˝ xG1y ˝ . . . ˝ xGMy (6)

where xGmy for m P t1, . . . ,Mu is the encoding of the mth gate in the circuit C, and X is a special
placeholder symbol for holding the input of the circuit.7 The argument encodings of the gate Gm with K
arguments is defined as

xGmy
def
“ TpGmq & Bpg1q # Bpmq . . . & BpgKq # Bpmq, (7)

where TpGmq P tAND, OR, NOTu for m P t1, . . . ,Mu denotes the type of the gate Gm, BpgN q is the binary
encoding of the position of the ith argument of the gate Gm, and Bpmq is the binary encoding of the gate’s
index m.

7Note that, although the first N positions contain placeholders for input strigns, the circuit encoding is independent of the input
string—since all compatible strings are of the same length, the circuit encoding does not change depending on the input string.

9

Example 3.1. The encoding of the circuit Cpx1, x2, x3q “ px1 ^ x2q _ x3 is

xCy
def
“ X X X

looomooon

input

AND &000 #010 &001 #010
loooooooooooooomoooooooooooooon

arguments to AND

OR &011 #100 &010 #100
loooooooooooooomoooooooooooooon

arguments to OR

. (8)

There are two main differences between Merrill & Sabharwal’s (2025a) definitions and ours:

(1) We encode the argument pointers of each gate using their binary encodings instead of unary ones as
Merrill & Sabharwal (2025a) do. We require this to ensure that a shallow (in our case, logarithmic-
depth) finite-precision transformer can convert the circuit encoding into contents of the residual stream.
It is not clear how to do this with unary encodings.

(2) Second, we replicate the positions of the gates after the pointer to each argument (prefixed by the
special # symbol). This is needed to avoid the use of the layer hash norm to compute the pointer to the
argument’s gate, which is done by Merrill & Sabharwal (2025a).

Definition 3.4 (F circuit evaluation; Merrill & Sabharwal, 2025a, Def. 11). Let F be a class of (potentially
non-uniform) circuit families. The F circuit evaluation problem is defined as follows:

• Input: pw, xCyq where w P t0, 1u˚ is a string and xCy is the serialization of a circuit C (cf. Def. 3.3)
such that C “ C|w| for some circuit family tCNu8

N“0 P F .

• Output: The value Cpwq.

We refer to the special case where F “ ACd as the ACd circuit evaluation problem. We further define
wide-ACd Ď ACd as the class of circuit families tCNu8

N“0 such that there exists some c such that, for large
N , the depth of CN is at most c logdN and, crucially, the size is at least N c. That is, the size (and hence the
width) of the circuit is large relative to its depth. We define the corresponding wide-ACd circuit evaluation
problem as a variant of circuit evaluation problem with F “ wide-ACd.

The following lemmata show that both ACd and wide-ACd circuit evaluation are hard for L-uniform ACd

under NL reductions. Their proofs are identical to the ones in Merrill & Sabharwal (2025a), except that we
replace TCd with ACd (the proofs are not affected by the small differences in circuit serializations, since our
serialization is also logspace-computable).

Lemma 3.2 (Analog of Merrill & Sabharwal, 2025a, Lem. 5). For d ě 1, ACd circuit evaluation is hard for
L-uniform ACd under L reductions.

Lemma 3.3 (Analog of Merrill & Sabharwal, 2025a, Lem. 6). For d ě 1, wide-ACd circuit evaluation is
hard for L-uniform ACd under L reductions.

The following lemma shows that wide-ACd circuit evaluation, using the modified circuit serialization we
defined, can be solved by L-uniform LPTd.

Lemma 3.4 (Analog Merrill & Sabharwal, 2025a, Lem. 7). There exists an L-uniform LPT1 family of trans-
formers tTNuNPN such that, on input w ˝ xCy, where w P t0, 1u

˚ and xCy is the serialization of a depth L

circuit with N
def
“ |w ˝ xCy| inputs, TN computes Cpwq when unrolled OplogNq ` L times.

Proof sketch. The high-level idea of the construction is similar to that of Merrill & Sabharwal, 2025a, Lem.
7, but we need to adapt it to the fixed-precision setting. Let C be a circuit of depth L over N inputs. The
transformer T simulates C in two stages:

1. Converting the input w ˝ xCy into internal representations that will allow the transformer to process it.
This stage requires OplogNq layers.

10

2. Iteratively applying the circuit operations to the internal representations to compute the final output.
This stage requires L layers.

Stage 1 converts the binary encodings of the argument pointers stored in the input string xCy into binary
encodings stored in the residual stream as per the L-uniform construction in Lem. A.6. These pointers the
allow the model to retrieve the values stored in those positions (once they become available). Importantly,
this conversion only has to happen once for all gates and inputs in parallel, even if the inputs have not been
computed yet—this is possible since the encoding of the entire circuit is available at the beginning. This
means that the computation of pointers adds a fixed overhead of OplogNq layers to the simulation.

At the same time, the positions containing the gate addresses Bpmq compute their binary encodings in the
same way as the input arguments (cf. Lem. A.6), storing the binary encoding in another designated part of the
residual stream. The final position of the input argument can then attend logN positions forward to retrieve
the position of the gate it belongs to—this can be done by storing the (signed) binary encodings of both n and
n ` logN in the positional encodings. With this, each input argument gN contains both the pointer to its
value as well as the pointer to the gate it belongs to—this will be used at a later stage of the simulation, when
each gate has to read its input argument values before computing its own value.

The rest of the proof (Stage 2) closely follows that of Merrill & Sabharwal, 2025a, Lem. 7. In contrast
to Merrill & Sabharwal’s (2025a) fully uniform transformer, ours is L-uniform; the only aspect of the
transformer family that depends on N is the size of the matrices, which needs to grow with the growing
positional encodings. The counters required to construct such matrices can be implemented in log-space,
which is why the transformer family is L-uniform. The transformer uses L layers to simulate the circuit
layer by layer, using the pointers constructed in Stage 1 to retrieve the values of the input arguments of each
gate. The only difference is that, to avoid issues with fixed precision, the model computes the AND gates by
detecting 0 among the inputs and the OR gates by detecting a 1 among the inputs as per Lem. A.5—this is
enough to determine the truth value of the gate. ■

We have the following corollary, whose proof is identical to Merrill & Sabharwal, 2025b, Cor. 7.1,
replacing TCd with ACd.

Corollary 3.1 (Analog of Merrill & Sabharwal, 2025a, Cor. 7.1). For d ě 1, the wide circuit evaluation
problem is in L-uniform LPTd.

This leads us to the main result of this section.

Lemma 3.5. For any d ě 1, L-uniform LPTd Ě L-uniform ACd.

Proof. Let L be the wide-ACd circuit evaluation problem, C be the class L-uniform ACd, and R be the class L.
The preconditions of Lem. 3.1 are met:

1. Cor. 3.1 shows that L P L-uniform LPTd for d ě 1. Together with Thm. 3.1, this implies L P

L-uniform ACd.
2. Lem. 3.3 shows that L is hard for ACd under L reductions. Together with the above, we get that L is

complete for L-uniform ACd.
3. Thm. 3.3 gives us L Ď L-uniform LPTd, meaning that L-uniform LPTd can compute any L reduction.

Thus, Lem. 3.1 applies, yielding L-uniform ACd Ď L-uniform LPTd.
Note that, unlike Merrill & Sabharwal, 2025a, Thm. 3, which constructs a transformer with depth

OplogdNq to simulate TCd circuits, our application of Lem. 3.4 yields a transformer with depth OplogN ` logdNq

to simulate an ACd circuit. For d ě 1, this reduces to OplogdNq. ■

Lem. 3.5 and Thm. 3.1, together with London & Kanade’s (2025) result for d “ 0, characterize the
relationship between L-uniform LPTd and L-uniform ACd, analogous to Merrill & Sabharwal, 2025a, Thm. 3.

Theorem 3.4. For any d ě 0, L-uniform LPTd “ L-uniform ACd.

11

4 Discussion and Conclusion

We establish that L-uniform fixed-precision looped padded transformers with polylogarithmic depth and
polynomial padding are exactly equivalent to L-uniform ACd circuits. This adds to the growing characterization
of transformer expressivity across different precision regimes, as summarized in Fig. 1.

Our results, combined with prior work, reveal how architectural choices—precision scaling, width scaling,
looping depth, and padding—affect computational power. In particular, (i) logarithmic precision, con-
stant width transformers achieve FO-uniform TCd (Merrill & Sabharwal, 2025a), leveraging high-precision
arithmetic to compute threshold gates, while (ii) fixed precision, logarithmic width transformers achieve
L-uniform ACd, restricted to threshold-free computation due to bounded precision arithmetic.

The interplay of precision and width. These results shed additional light onto which architectural details
matter for transformer expressivity. Precision arises as a major factor: Fixed-precision transformers achieve
ACd while log-precision transformers achieve the strictly stronger TCd at every depth level d. This cannot
be compensated for with a polynomial increase in model width: Despite having the same representation
space volume (p ¨ D “ ΩplogNq), the precision–width trade-off fundamentally constrains expressivity.
Fixed-precision transformers must distribute information across model dimensions without concentrating
arbitrary amounts into individual values.

The role of transformer family uniformity. While Def. 2.4 defines transformer uniformity for any class X,
our results concern L-uniform transformer and circuit families. We choose this class for multiple reasons.
Firstly, L-uniform transformer families have been characterized by prior work on finite-precision transformers
(London & Kanade, 2025), allowing direct comparisons. More importantly, however, our constructions rely
on the power of L for constructing positional embeddings. Recall that the definition of transformer uniformity
requires positional encodings ppn,Nq to be computable in class X from the input p1N , Bpnqq. Restricting the
class X to FO would limit the positional encodings to first-order logic, which is insufficient for computing
many useful functions of n and N (e.g., arithmetic operations such as division and modulo). Nevertheless,
London & Kanade’s (2025) results on the equivalence between L-uniform LPT0 and L-uniform AC0 should
generalize to any uniformity class X. However, our constructions that generalize the fixed-depth results
to looping heavily rely on L-computable functions for positional encodings, implying that X must at least
contain L and suggesting the equivalence between X-uniform LPTd and X-uniform ACd for any class X at
least as powerful as L. This further motivates the study of transformer uniformity classes beyond L-uniform.
In particular, it raises the question of how the complexity of computing the positional encodings affects
the expressivity of the resulting transformer family. Could we decouple the complexity of computing the
positional encodings from the complexity of specifying the transformer? In particular, can we keep the
construction of the transformer completely uniform (the same for all input lengths N ; such transformers are
studied by, e.g., Yang et al. (2024), Li & Cotterell (2025), and Jerad et al. (2025)) and increase the complexity
of the positional encodings to achieve more expressivity?

Acknowledgments

Anej Svete is supported by the ETH AI Center fellowship. Some ideas for this work (for example, the notation
in §2.5 and the motivation for unifying the results in §4) were developed during the 2025 Dagstuhl Seminar
25282 “Theory of Neural Language Models”, particularly in the “Uniformity” working group attended by
Satwik Bhattamishra, Michaël Cadilhac, David Chiang, Will Merrill, Ashish Sabharwal, Clayton Sanford,
Howard Straubing, and Laura Strieker.

12

References

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, and Se-Young Yun. Mixture-of-recursions: Learning dynamic
recursive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025. URL
https://arxiv.org/abs/2507.10524.

Robin S. M. Chan, Reda Boumasmoud, Anej Svete, Yuxin Ren, Qipeng Guo, Zhijing Jin, Shauli Ravfogel,
Mrinmaya Sachan, Bernhard Schölkopf, Mennatallah El-Assady, and Ryan Cotterell. On affine homotopy
between language encoders. In NeurIPS, 2025.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan Wang,
Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic depth scaling
to foster adaptive internal thinking. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 28241–28259, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1369. URL
https://aclanthology.org/2025.acl-long.1369/.

Ryan Cotterell, Anej Svete, Clara Meister, Tianyu Liu, and Li Du. Formal aspects of language modeling.
arXiv preprint arXiv:2311.04329, 2024. URL https://arxiv.org/abs/2311.04329.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transform-
ers. arXiv preprint arXiv:1807.03819, 2019. URL https://arxiv.org/abs/1807.03819.

Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical systems theory, 17(1):13–27, Dec 1984. ISSN 1433-0490. doi: 10.1007/BF01744431. URL
https://doi.org/10.1007/BF01744431.

Jonas Geiping, Sean Michael McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation
Models, 2025. URL https://openreview.net/forum?id=D6o6Bwtq7h.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris Papailiopou-
los. Looped transformers as programmable computers, 2023. URL https://proceedings.mlr.press/
v202/giannou23a.html.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan.
Think before you speak: Training language models with pause tokens. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?id=ph04CRkPdC.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training
large language models to reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024.
URL https://arxiv.org/abs/2412.06769.

Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York, 1999.
ISBN 978-0-387-98600-5. doi: 10.1007/978-1-4612-0539-5. URL https://link.springer.com/book/
10.1007/978-1-4612-0539-5.

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides. arXiv
preprint arXiv:2503.14615, 2025. URL https://arxiv.org/abs/2503.14615.

13

https://arxiv.org/abs/2507.10524
https://aclanthology.org/2025.acl-long.1369/
https://arxiv.org/abs/2311.04329
https://arxiv.org/abs/1807.03819
https://doi.org/10.1007/BF01744431
https://openreview.net/forum?id=D6o6Bwtq7h
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=ph04CRkPdC
https://arxiv.org/abs/2412.06769
https://link.springer.com/book/10.1007/978-1-4612-0539-5
https://link.springer.com/book/10.1007/978-1-4612-0539-5
https://arxiv.org/abs/2503.14615

Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of transformer language models. arXiv, 2025.
URL https://arxiv.org/abs/2505.23623.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to solve
inherently serial problems. In ICLR, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers learn
shortcuts to automata. In ICLR, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

Charles London and Varun Kanade. Pause tokens strictly increase the expressivity of constant-depth
transformers. arXiv preprint arXiv:2505.21024, 2025. URL https://arxiv.org/abs/2505.21024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision transformers.
TACL, 11:531–545, 2023. URL https://aclanthology.org/2023.tacl-1.31/.

William Merrill and Ashish Sabharwal. Exact expressive power of transformers with padding. arXiv preprint
arXiv:2505.18948, 2025a. URL https://arxiv.org/abs/2505.18948.

William Merrill and Ashish Sabharwal. A little depth goes a long way: The expressive power of log-depth
transformers. arXiv preprint arXiv:2503.03961, 2025b. URL https://arxiv.org/abs/2503.03961.

David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within nc1. Jour-
nal of Computer and System Sciences, 41(3):274–306, 1990. ISSN 0022-0000. doi: https://doi.org/
10.1016/0022-0000(90)90022-D. URL https://www.sciencedirect.com/science/article/pii/
002200009090022D.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. In COLM, 2024. URL https://openreview.net/forum?id=NikbrdtYvG.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J. Reddi. Reasoning with
latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025. URL
https://arxiv.org/abs/2502.17416.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize exactly the
star-free languages. In NeurIPS, 2024. URL https://openreview.net/forum?id=FBMsBdH0yz.

Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu Li, and
Zhouhan Lin. Pretraining language models to ponder in continuous space. arXiv preprint arXiv:2505.20674,
2025. URL https://arxiv.org/abs/2505.20674.

14

https://arxiv.org/abs/2505.23623
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=De4FYqjFueZ
https://arxiv.org/abs/2505.21024
https://aclanthology.org/2023.tacl-1.31/
https://arxiv.org/abs/2505.18948
https://arxiv.org/abs/2503.03961
https://www.sciencedirect.com/science/article/pii/002200009090022D
https://www.sciencedirect.com/science/article/pii/002200009090022D
https://openreview.net/forum?id=NikbrdtYvG
https://arxiv.org/abs/2502.17416
https://openreview.net/forum?id=FBMsBdH0yz
https://arxiv.org/abs/2505.20674

A Theoretical Gadgets

This section contains various (existing) theoretical gadgets that are used in the proofs of the main results.
In the following, N P N always refers to the length of the original input string. We use JwK P t0, 1u|Σ| to
denote the one-hot encoding of symbol w P Σ. We define the intereleaving of the vectors x,y P RD as
x"y P R2D where

x"yd
def
“

#

xpd ` 1q{2 if d is odd,
yd{2 otherwise d.

(9)

A.1 Positional Encodings

Uniquely identifying positions in a string requires the “volume” of the representation space to grow with the
string length. In the case of finite-precision logarithmic-width transformers, this is achieved with positional
encodings that encode the binary representation of the position in the string. The following lemma follows
from the definition of fixed-point arithmetic, and the rounding and thresholding applied therein.

Lemma A.1. Let x P Fp for some p P N such that x ą log 2pp ` 1q. Then, it holds that

exppxq “ BF, (10a)

expp´xq “ 0. (10b)

Lem. A.2 readily follows.

Lemma A.2 (Generalization of Li et al., 2024, Lem. E.3). For N P N, n P rN s, define the vectors qn P

R2rlogNs and kn P R2rlogNs as follows:

qn
def
“ BF{m ¨ pB˘pnq

"
1rlogNsq (11a)

kn1
def
“ B˘

`

n1
˘"

p´1rlogNsq. (11b)

Then, it holds that

qJ
nkn1 “

#

0 if n “ n1

x otherwise .
(12)

where x ď ´2BF{m.

A.2 Useful Attention Patterns

The following lemmata describe how a transformer layer can either ignore or exclusively focus on specific
positions in the input string.

Lemma A.3 (Ignoring Marked Positions with a Transformer). Let N,D P N, N Ď rN s, and let H P RNˆD

be a matrix representing the residual stream such that

J˝K P Hn,: ðñ n P N . (13)

Here, the notation J˝K P Hn,: means that the vector Hn,: contains the one-hot encoding J˝K of the symbol
˝ at position n. Further, let G def

“ HrNszN ,: P RpN´|N |qˆD, where HrNszN ,: denotes the projection of the
matrix H onto the rows not in N . Finally, let τ be a transformer layer. Then, there exists a logarithmic-width
transformer layer τ 1 such that it holds for G1 def

“ τ pGq P RpN´|N |qˆD and H 1 def
“ τ 1pHq P RNˆD that

G1 “ H 1
rNszN ,:. (14)

15

Informally, Lem. A.3 states that a transformer layer can ignore positions containing one-hot encodings of
specific “marker” symbols, such as additional symbols not in the original alphabet.

Proof. Notice that, since H and G match on all positions not in N , ignoring the positions in N (marked by
˝) by τ 1 will ensure that the outputs of the two layers τ and τ 1 are identical on the positions not in N . We
now construct a transformer layer that ignores the contributions of rows marked by J˝K. To do so, we modify
each attention head of τ such that the head computes its attention scores with queries and keys of the form

q1
n

def
“ ¨

¨

˝

qn
´BF ¨ J˝K
´BF ¨ J˝K

˛

‚ (15a)

k1
n1

def
“

¨

˝

kn1

Jwn1K
Jwn1K

˛

‚ (15b)

where qn and kn1 are the original head’s query and key vectors of T at position n and n1, respectively, and
Jwn1K is the one-hot encoding of the symbol at position n1. We can then compute the dot product of the two
vectors as

q1J

nk
1
n1 “ qJ

nkn1 ´ BF ¨ 1 twn1 “ ˝u ´ BF ¨ 1 twn1 “ ˝u . (16)

This is computed in finite-precision fixed-point arithmetic. Thus, if wn1 ‰ ˝, the attention score is qJ
nkn1 and

the head behaves as it did in T . If the symbol at position n1 is ˝, the last two components of the vectors q1
n

and k1
n1 ensure that the exponentiated value of the attention score becomes 0, thus not contributing to the

attention weights. T 1 can thus simulate T on the rest of the positions. ■

Lemma A.4 (Focusing on Marked Positions with a Transformer). Let N,D P N, R : rN s Ñ rN s, r P rN s,
N def

“ R´1prq Ď rN s, and let H P RNˆD be a matrix representing the residual stream such that

BpRpnqq P Hn,: for all n P rN s (17)

Here, the notation BpRpnqq P Hn,: means that the vector Hn,: contains the signed binary encoding (cf. §2)
of Rpnq. Further, let G def

“ HN ,: P R|N |ˆD, where HN ,: denotes the projection of the matrix H onto the
rows in N . Finally, let τ be a transformer layer. Then, there exists a logarithmic-width transformer layer τ 1

such that it holds for G1 def
“ τ pGq P R|N |ˆD and H 1 def

“ τ 1pHq P RNˆD that

G1 “ H 1
N ,:. (18)

Informally, Lem. A.4 states that a transformer layer can focus on positions containing signed binary
encodings of a number r computed as a function of the position while ignoring the rest of the positions.

Proof. The idea of the construction of τ 1 is similar to that of Lem. A.3, but instead of ignoring the positions
in N , we want the transformer layer to focus on them while ignoring the rest of the positions. This can be
done by including BpRpnqq in the positional encodings of the attention heads and then using the key and
query vectors of the form

q1
n

def
“

¨

˝

qn
BF{2 ¨ pB˘prq

"
1rlogNsq

BF{2 ¨ pB˘prq
"
1rlogNsq

˛

‚ (19a)

k1
n1

def
“

¨

˝

kn1

B˘pRpn1qq
"

p´1rlogNsq

B˘pRpn1qq
"

p´1rlogNsq

˛

‚ (19b)

16

where qn and kn1 are the original head’s query and key vectors of T at position n and n1, respectively, and
BF is the maximal representable number in the fixed-point arithmetic (which might depend on the string
length N). We can then compute the dot product of the two vectors as

q1J

nk
1
n1 “ qJ

nkn1 ` BF{2 ¨ pB˘prq
"
1rlogNsq

JpB˘
`

Rpn1q
˘"

p´1rlogNsqq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

def
“G

(20a)

` BF{2 ¨ pB˘prq
"
1rlogNsq

JpB˘
`

Rpn1q
˘"

p´1rlogNsqq
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

def
“G

Note that Eq. (20a) uses fixed-point arithmetic. We compute the inner product in Eq. (20a) by analyzing
individual cases:

1. Case 1: Rpn1q ‰ r.

All intermediate computations of Eq. (20a) are thresholded at minpBF, q
J
nkn1 ` BF{2q. In particular,

by Lem. A.2, the value after adding the first term G is at most minpBF, q
J
nkn1 ` BF{2q ´ 2BF{2 ď

BF ´BF “ 0. After adding the second term G, the value is at most ´BF, resulting in a 0 exponentiated
attention score, as required.

2. Case 2: Rpn1q “ r. We analyze three sub-cases based on the value of qJ
nkn1 .

1. Sub-case 2a:
∣∣qJ

nkn1

∣∣ ă log 2pp`1q. All intermediate computations in Eq. (20a) are bounded by
log 2pp`1q`BF{2 in absolute value, so they fall within the range of Fp. Moreover, addition of BF{2

can be exactly represented in Fp. This makes addition in Eq. (20a) associative and commutative.
By Lem. A.2, the terms G in Eq. (20a) are 0, meaning that the final attention score equals qJ

nkn1 .

2. Sub-case 2b: qJ
nkn1 ě log 2pp ` 1q. In this case, the intermediate computations of Eq. (20a) are

either exact or thresholded at BF. In both cases, the exponent of the resulting attention score is
BF by Lem. A.1, preserving the attention score.

3. Sub-case 2c: qJ
nkn1 ď log 2pp` 1q. In this case, all intermediate computations are representable

in Fp analogously to the case 2a. The attention score is therefore preserved.

This means that the attention scores between positions n and n1 of τ 1 are identical to those of τ on the
positions in N , while the attention scores on the rest of the positions are 0. This completes the proof. ■

Lemma A.5 (Detecting a symbol occurrence). There exists a L-uniform LPT0 family of transformers tTNuNPN
such that, for any N P N, on input w P Σ˚ of length N and w P Σ, TN ’s residual stream at position 1
contains the entry 1 tw P wu.

Proof sketch. Note that TN cannot use the commonly-used exact uniform attention over all symbols to detect
1 tw P wu due to fixed precision. Nevertheless, rounded uniform attention suffices. By attending to all
symbols in the string with weight 1, the denominator of the attention scores is at most BF. Using one-hot
encodings of symbols wn as the attention values vn, it is easy to see that the final contextual representation
at the final position will have a positive value at the entry corresponding to w if and only if w P w, since
c{BF ą 0 for any c ě 1. This condition can be checked by the MLP applied after the attention aggregation
operation. This construction is clearly logspace computable. ■

Lemma A.6 (Converting a binary representation into a positional encoding). There exists a L-uniform LPT1

family of transformers tTNuNPN such that, on input & Bpnq, TN ’s residual stream at position rlogN s ` 1
contains the value Bpnq for any N P N and n P rN s.

17

Proof sketch. The transformer TN has to convert the binary representation Bpnq of n contained in across
rlogN s positions in the input string into a single rlogN s-dimensional binary vector in the residual stream.
This is done as follows:

1. In the first layer, each symbol wn1 P t0, 1u checks if it is immediately preceded by the & symbol, which
denotes the beginning of the pointer in the string. If it is, wn1 stores e1 and d1

def
“ wn1e1 in designated

parts of its residual stream. Here, e1 is the first unit vector of RrlogNs.
2. In the subsequent layers l P t2, . . . , rlogN su, each symbol wn1 checks if the entry el´1 has already

been written to the designated space of the previous symbol’s residual stream. If it has, wn1 copies and
shifts el´1 into el, and stores el and dl

def
“ dl´1 ` wn1el in designated parts of its residual stream.

After rlogN s layers, the residual stream at position rlogN s ` 1 thus contains Bpnq.
This construction only requires positional encodings that contain Bpnq and BpN ´ 1q, which are logarith-

mically computable. Moreover, the parameters of the transformer TN only change with N in terms of the size
of the matrices, while their structure remains the same—they either project onto specific coordinates (whose
indices can be computed with counters in a logarithmic-space Turing machine) or shift the coordinates of
vectors, which can also be done in logarithmic space. Thus, the family tTNuNPN is in L-uniform LPT1. ■

18

	Introduction
	Preliminaries
	Notation
	Circuit Complexity
	Finite-precision Fixed-point Arithmetic
	Transformers and Transformer Families
	Looped Padded Transformers

	Exact Characterization of L-uniform LPTd
	Upper Bound: L-uniform LPTd L-uniform ACd
	Lower Bound: L-uniform LPTd L-uniform ACd
	Transformers Can Make Use of Reductions
	Lower Bound: NLL-uniform LPT1
	Lower Bound: L-uniform ACdL-uniform LPTd

	Discussion and Conclusion
	Theoretical Gadgets
	Positional Encodings
	Useful Attention Patterns

