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ABSTRACT

Most expressivity results for transformers treat them as language recognizers
(which accept or reject strings), and not as they are used in practice, as language
models (which generate strings autoregressively and probabilistically). Here, we
characterize the probability distributions that transformer language models can
express. We show that making transformer language recognizers autoregressive
can sometimes increase their expressivity, and that making them probabilistic can
break equivalences that hold in the non-probabilistic case. Our overall contribu-
tion is to tease apart what functions transformers are capable of expressing, in
their most common use-case as language models.

1 INTRODUCTION

Most work studying transformer expressivity, that is, what classes of computations transformers can
perform, treats them as language recognizers, where the input is a string and the output is a bi-
nary classification: true if the string is accepted and false otherwise (Strobl et al., 2024). However,
the most common practical use of transformers is as language models, which differ in two ways:
first, the input is a prefix of a string, and the output is a prediction of the next symbol; second,
the prediction is a probability distribution rather than a binary decision. Such probability distribu-
tions, when estimated from large text corpora, have enabled a wide range of applications in natural
language processing and beyond. An open and fundamental question concerns which probabil-
ity distributions transformer language models can express. This distributional perspective exposes
where previously-proven equivalences retain or lose their validity in the probabilistic setting.

We distinguish, on the one hand, between unweighted (or equivalently, Boolean-weighted) and real-
weighted computation, and, on the other hand, between classifiers, which map a complete string
to a value, and autoregressors, which map each prefix to a distribution over the next token. Under
this terminology, most theoretical work on transformer expressivity (e.g. Yang et al., 2024; Jerad
et al., 2025) focuses on Boolean-weighted classifiers, while practical applications use transformers
as real-weighted autoregressors. The theoretical expressivity of transformers as real autoregressors
has been comparatively underexplored.

In this paper, we answer this question for several variants of transformers. Yang et al. (2024) proved
that strictly-masked rightmost UHATSs, as Boolean classifiers, recognize the same languages as linear
temporal logic (LTL) and counter-free automata. There are two commonly-used weighted analogues
of regular languages, those defined by weighted deterministic finite automata (DFAs) and weighted
nondeterminizible finite automata (NFAs), and each of these have counter-free versions. Surpris-
ingly, these two diverge in the real-weighted setting, despite being equivalent in the Boolean setting.
We prove that, as autoregressors, these transformers define exactly the same weighted languages as
counter-free DFAs.

Jerad et al. (2025) proved that leftmost UHATSs, as Boolean classifiers, recognize the same languages
as a fragment of LTL, called in our notation TL[P], or a subclass of counter-free DFAs called par-
tially ordered DFAs. Similarly, Li and Cotterell (2025) proved that softmax attention transformers
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Fact 6.5

rightmost UHATS = . ¢4
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= fixed-precision — = fixed-precision = fixed-precision == = fixed-precision
SMATs = TL[P] SMATs = TL[P] SMATs = TL[P] SMATs = TL[P]

Figure 1: In the Boolean semiring, equivalences from the literature (Yang et al., 2024; Jerad et al.,
2025; Yang et al., 2025) carry over from classifiers to autoregressors; however, sometimes autore-
gressors are more expressive than classifiers. In the real semiring, LTL and counter-free DFAs and
NFAs become less expressive than counter-free NFAs, and rightmost UHATSs are only as expressive
as the former. Key: — strict inclusion, <> equivalence. # incomparable.

(SMATs) with fixed precision, as Boolean classifiers, recognize the same class of languages. But
here we show that as autoregressors, these variants become slightly more powerful.

Yang et al. (2025) considered SMATs with fixed precision but arbitrary precision inside attention.
As Boolean classifiers, these transformers are exactly equivalent to a temporal logic extended with
counting operators. But here we show that, as autoregressors, they become slightly more powerful
(for a given fixed depth).

In §3, we define notational preliminaries. We then (§4) define the classes of transformers we con-
sider, and show how they can be used as classifiers and as autoregressors. We then (§5) introduce
two other formalisms, deterministic finite automata (DFAs) and linear temporal logic (LTL), and
show how they can also be seen as instantiations of the framework we showed for transformers.
Then (§6), using LTL, we investigate the expressive power of transformers as both classifiers and
autoregressors, yielding the results shown in Fig. 1.

2 RELATED WORK

Theoretical study of transformers as language models has not gone totally neglected. Hahn (2020)
compared a SMAT language model with a probabilistic finite automaton for parity (strings that have
an odd number of 1’s). Yao et al. (2021), following previous work on RNNs, consider a transformer
language model to e-generate a language if it assigns probability at least e to each symbol in every
string in the language (and no strings not in the language). They also discuss how to convert a
construction for a bounded Dyck language (strings of matching parentheses up to a certain depth)
from an e-generator to a language recognizer. These studies were specialized to particular languages
and used specialized ways of comparing distributions that do not generalize in an obvious way.

Svete and Cotterell (2024) made progress by showing that average-hard attention transformer lan-
guage models can exactly express all n-gram language models. This made an important step towards
understanding the expressivity of transformer language models, though it left an exact charcateriza-
tion open.

Bhattamishra et al. (2020) proved theoretical results on transformers as language recognizers but
carried out experiments on transformer language models for the character prediction task, which
is to predict, at each position, the set of next possible symbols (what we will call Boolean autore-
gression). This experimental setup was previously used in studies of RNNs, and has been adopted
in other studies of transformers (Huang et al., 2025; Yang et al., 2025). We discuss the experiment
of Yang et al. (2025) in §6.3.3.
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3 PRELIMINARIES

Throughout this paper, we work with weighted languages. We define some key concepts here, but
for a more detailed introduction, see the handbook chapter by Droste and Kuske (2021).

Let 3 be an alphabet, that is, a finite, non-empty set of symbols, and let 3* be the set of strings
over X.. We often augment 3 with start and end symbols BOS and EOS, but never consider BOS or
EOS to belong to ¥. For any string w = wy - - - wy,, we write the length of w as |w| = n. We write
We; = W1 Wi—1 andei = wy - W;.

We think of weights and probabilities as elements of semirings, an abstraction of the usual addi-
tion and multiplication operations that allows results and algorithms apply generically to multiple
settings. A semiring K has an addition operation &, additive identity 0, multiplication operation ®,
and multiplicative identity 1. The two semirings we focus on in this paper are the (extended) real
semiring Rzo, which contains all nonnegative real numbers and +oc0, and in which @ and ® are
real addition and multiplication; and the Boolean semiring B, in which & is disjunction (V), O is
false (L), ® is conjunction (A), and 1 is true (T).

A weighted language (also called a formal power series) is a function S: ¥* — K. When K is
complete (that is, it allows infinite summations, as R> and B do), we call a weighted language

normalized if ), ... S(w) = 1.

For sets X and Y, we write YX for the set of functions from X to Y, and 2% for {0,1}* or the
power set of X. For any proposition ¢, we write I {¢} to be 1 if ¢ is true and 0 if ¢ is false.

4 TRANSFORMER LANGUAGE MODELS

In this section, we recall the definition of transformers that we will use throughout most of this
paper. We also distinguish between two ways that transformers (and other formalisms) can be used
to define weighted languages.

4.1 UNIQUE HARD ATTENTION TRANSFORMERS

Following Yang et al. (2024), we use unique-hard attention transformers (UHATSs), specifically,
with rightmost-hard attention, strict future masking, and no position embeddings. We give a defini-
tion of strictly masked rightmost-hard attention here; for a definition of the rest of the network, see,
for example, the survey by Strobl et al. (2024).

The attention function receives a sequence of query vectors q() € R%, key vectors k(/) € R%, and
value vectors v € R?, for i, j € [n]. At each position i, it computes

At (@i (K9 jepn, (V) je)) = (D)iem ()
where
ai(j) = q - kW is an attention score for each position 7,
af = maxa;(j) is the maximum attention score,
J<i
Ji=max{j <i|a;(j)=a;} is the rightmost maximum-scoring position, and
c) = v ifi>0 is the attention output
“lo  ifi=0 P

Given an input string w = wy - - - Wy, a transformer 7 prepends a symbol wy = BOS and computes
a sequence of “states” 7 (w) = (h(® ... h(™), where h) € R? is the state after reading w;.
There are at least two ways to use 7 to define a weighted language.'

'A third intermediate way would be to multiply the weights at each position like an autoregressive model,
but not to pass the output symbol at each position autoregressively to the input at the next position. Although
interesting in its own right, it has not, to our knowledge, been used with any neural sequence models, and we
do not explore this style of model here.
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4.2 CLASSIFIERS

The first way that a transformer can define a weighted language is as a classifier.
Definition 4.1. A UHAT classifier is a pair C = (T,c), where T: ¥* — (R%)* is a UHAT and
c: R? — K outputs a scalar weight at the last position only:

Clw) = (T (w)n). 2

For the Boolean semiring (K = B), we accept a string iff the transformer outputs T at the last
position. For example, the output function could be ¢(y) = I{Wy + b > 0}, where W and b are
parameters. This is the setup used for binary classification with a transformer encoder (Devlin et al.,
2019) and in most theoretical papers on transformer expressivity.

4.3 AUTOREGRESSIVE MODELS

The second way for a transformer to define a weighted language is as an autoregressive model,
or an autoregressor for short (by analogy with classifier), which pairs a UHAT encoder with an
output function a: R? — K>Y{E0S} which outputs at each position a weight distribution for the

next symbol, including EOS. In the real semiring (K = R>), a typical example of such an output
function is a(h) = softmax(Wh + b).

To line up with the more familiar notation of conditional probability distributions, we write, for all
o € Y U{EOS},

Pry(o | w<;) = a(T(w);)(0). (3)
This is well-defined because 7 (w); depends only on w<;, that is, w<; = w’;, < T(w); =
T (w');. As suggested by this notation, we want Pr4(- | u) to be a probability distribution over
Y U {EOS}. But we impose a stronger condition. First, we extend Pry (o | u) to the probability
distribution of suffixes given (possibly empty) prefixes:

v

Pra(v|u) = ®PrA(vi | uv<;) | ® Pra(EOS | uw) 4)
i=1

Pra(w) =Pra(w | ¢). (5)

Then we require that every such distribution sums to one:

Definition 4.2. A UHAT autoregressor over a complete semiring K is a pair A = (T, a), where
T: %% = (RY* is a UHAT, and a: R? — K>S} s g function such that for all w € X* (using
the notation of Egs. (3) and (4)),

@ Pra(v|u) =1. (6)

veEX*

This implies that:

* An autoregressor generates strings symbol by symbol. That is, for all prefixes u,
> Pra(o|u)=1. @)
oceXU{EOS}

* An autoregressor does not have any dead ends or endless loops. That is, for all prefixes w,

®PrA(ui | ue;) #0 = Pry(uv) # 0 for some suffix v. (8)
i=1

* An autoregressor defines a normalized weighted language.

5 OTHER FORMALISMS

We can analogously use other formalisms to define classifier or autoregressive models. Any state
encoder which sends a string wy - - - w,, to a sequence of “states” qg,...,q, € @, such that g;
depends only on w<;, can be equipped with an output function c: ) — K to give a classifier model

ora: @ — K>Y{E0s} (o give an autoregressive model exactly as we did with transformers above.
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a a
(a) (b)

Figure 2: (a) A DFA that is counter-free (with £ = 2). (b) A DFA that is not counter-free, because
for all k, the strings a* and a**! have opposite actions. (c) A counter-free weighted NFA that has
no equivalent weighted DFA (Fact 6.5).

5.1 FINITE AUTOMATA
Definition 5.1 (Deterministic finite automaton). A deterministic finite automaton (DFA) is a tuple
M= (%,Q,0,t), where

e > is an alphabet

e () is a finite set of states

e §: Q X X — Q is a transition function
e | € ( is the initial state.

We extend 6 to a mapping 0*: Q X X* — Q such that:
§*(g,¢) =q

. » 9
6*(g,ow) = 6"((q,0), w).
A DFA M defines a state encoder
M: ¥ — QF
L 1=0
M(w); = {5*(L,w1~-wi) 0<i<n. (10)

A DFA with classifier outputs in the Boolean semiring is the same as the standard definition of a
DFA: the states that output T are the accept states, and the states that output L are the reject states.

A DFA with autoregressive outputs in the real semiring is the same as the standard definition of a
weighted DFA: when it is in state ¢, the next input symbol ¢ determines both the next state J(g, o)
as well as the symbol weight a(q) (o). Moreover, each state has an accepting weight a(q)(EOS).

In this paper, we are only interested in the following subclass of finite automata called counter-free
automata, which we abbreviate as cfDFAs.

Definition 5.2 (Counter-free automaton). We say that a DFA with transition function § is counter-
free if there exists some k such that for all states q, all strings w, we have §* (g, w*) = §*(q, w**1).

Examples of counter-free and non-counter-free DFAs are shown in Fig. 2ab.

5.2 LINEAR TEMPORAL LOGIC

Definition 5.3 (Linear temporal logic). The formulas of past LTL are defined by the grammar

¢ =1 | 1 A 2
o oceXx
| BOS Beginning of string
| Yo Yesterday
| Hoy Historically
| &1S @2 Since
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Formulas T (true), L (false), 1V ¢2, ¢1 <> ¢2, and so on, can be defined as syntactic sugar in
terms of the above. The temporal operator P ¢ (which holds iff ¢ was Previously true at some time)
can be defined as Hp = —~(P(—¢)).

The semantics of formulas is given by the relation w,i |= ¢ (“w satisfies ¢ at position i), defined
as follows:

w,i g = w,iE ¢ (11a)
W, = 1 A do <= w,i = ¢ and w,i |= Py (11b)
w,iEBOS —=i=0 (11c)
w,i o S w; =0 (11d)
wiEYd e=i>0andw,i—1E ¢ (11e)
w,i =EHpy <= w,jE ¢ forallj<i (111)

w,i = ¢1 S o <= (w, ] = oo for some j < i)and (w,j' = ¢y forall j < j' <i).  (11g)
We write w |= ¢ as shorthand for w, |w| = ¢.

For any set of operators O C {Y, H, S}, we write TL[O] for the set of formulas using only operators
in O. Thus past LTL = TL[Y, S]. Given a tuple of formulas ® = (¢1,...,¢n), we can define a
state encoder

d: ¥ — (B™)*
P(w); = (H{w,i | ¢1},...[{w,i | dn}).

Droste and Gastin (2019) define a weighted first-order logic, with several variations corresponding
to several subclasses of weighted counter-free automata. Mandrali and Rahonis (2013; 2015) do the
same for LTL. Both of these logics have, roughly speaking, four layers: (1) a core Boolean logic,
(2) weights conditioned on formulas, (3) products over positions, and (4) addition and sums over
positions. This is similar to our framework, which has (1) a core Boolean logic, (2) classifier output
functions that can choose weights conditioned on formulas, and (3) autoregressive output functions
that can also compute products over positions.

6 EXPRESSIVITY RESULTS

Previous results have shown that UHATs, LTL, and cfDFAs are equivalent in terms of language
recognition. In §6.1, we use the results to show that these formalisms are also equivalent as weighted
classifiers and as autoregressors.

Next, we compare the expressivity of classifier versus autoregressive models. Given the equivalence
of the above formalisms, we will mainly discuss LTL. In the real semiring (§6.2), LTL classifiers
define exactly the aperiodic step functions (defined below), which are less expressive than LTL
autoregressors. And LTL autoregressors, in turn, are equivalent to counter-free DFA autoregressors
and less expressive than weighted counter-free NFAs.

In the Boolean semiring, LTL classifiers and autoregressors are equivalent, which is the main re-
sult of §6.3.1. However, when we consider fragments of LTL, this equivalence breaks down, and
autoregressors may become more expressive than classifiers (§6.3.2). Similarly, in the temporal

logic with counting TL[#, +] and the programming language C-RASP (Yang and Chiang, 2024),
autoregressors are more expressive than classifiers (§6.3.3).

6.1 STATE ENCODERS

We say that two state encoders 71 : ¥* — Q7 and 71 : ¥* — Q3 are equivalent if there is a bijection
f: Q1 — Q2 such that for all w € X*, f(71(w)) = 2 (w).

Theorem 6.1. UHATS, LTL, and cfDFAs define equivalent state encoders.

The proof is an adaptation of existing results (Yang et al., 2024; Schiitzenberger, 1965; McNaughton
and Papert, 1971; Kamp, 1968) connecting UHATSs, LTL and cfDFAs as language recognizers.
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Proof. See §A. O

The following is an immediate consequence of Thm. 6.1 and the definitions of classifier and autore-
gressive models.

Corollary 6.2. UHATs, LTL, and counter-free DFAs as classifier models define the same weighted
languages. Similarly when they are used as autoregressive models.

Proof. By the previous theorem, all these formalisms define equivalent state encoders. Therefore
there exist output functions with which they define the same weighted languages. O

6.2 REAL CLASSIFIERS AND AUTOREGRESSORS

In this section, we consider weights in the real semiring. We characterize what weighted languages
can be expressed, first by real classifiers, then by real autoregressors.

Definition 6.1. An aperiodic step function (Droste and Gastin, 2008) is a weighted language
S: 2% — K such that S(w) = @i~ k; @ I{w € L;} where L,...,L,, are aperiodic (that
is, counter-free) regular languages.

Proposition 6.3. An LTL classifier defines the aperiodic step functions.

Proof. Given any aperiodic step function as defined above, we can write, for each L;, an LTL for-
mula ¢;. Then we can write a classifier output function c(h) = @~ k; ® h;.

Conversely, given an LTL classifier consisting of a tuple of formulas (¢4, ..., ¢,,) and an output
function c¢(h), for every h € 2lm | write the formula ¢, = /\Z';l(gb, < h;). For every h, let Ly,
be the language defined by ¢y. Then the weighted language can be written as the step function
S('LU) = @hEQ[m] C(h) X H{’LU (S Lh} . D

The following easy corollary of Prop. 6.3 shows that autoregressors are in general more powerful
than classifiers.

Corollary 6.4. In the real semiring, the weighted language (%a)* is expressible by an LTL (TL[H])
autoregressor, but not by any LTL (TL[H]) classifier. The language (1a)* is expressible by a LTL
(TL[H]) classifier but not any LTL (TL[H]) autoregressor.

Proof. The first language has an infinite number of string weights, but an aperiodic step function can
only output a finite number of different weights. On the other hand, it is easy to write a weighted
LTL (TL[H]) formula with an output function to recognize this. The second language can easily
be expressed by a classifier assigning weight 1 to all strings of a’s, but is not expressible by any
autoregressor because it is not a normalized weighted language. O

As real autoregressors, LTL formulas are equivalent to counter-free DFAs by Cor. 6.2. However, both
are less expressive than weighted counter-free nondeterministic finite automata (NFAs), in which
a state can have more than one outgoing transition with the same symbol (see §C for a definition).

Fact 6.5. Weighted counter-free NFAs define more weighted languages than counter-free DFA au-
toregressors do.

Fig. 2c shows an example of a counter-free weighted NFA that is not determinizable. See §C for
more details.

Note that this stands in contrast with the unweighted case, where counter-free DFAs and counter-free
NFAs are equivalent. There are several nonequivalent analogues of counter-free automata (Droste
and Gastin, 2008), and LTL and UHAT autoregressors are only equivalent to the least powerful of
these.
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6.3 BOOLEAN CLASSIFIERS AND AUTOREGRESSORS

To examine more carefully how autoregressors add expressivity, we turn to the Boolean semiring.
We will see that LTL classifiers and LTL autoregressors are equivalent, but with an important caveat:
with certain fragments and extension of LTL that use only a subset of the temporal operators, autore-
gressors can be more expressive than classifiers. These variants of LTL are particularly interesting
because they have been proven to be equivalent to variants of transformers.

6.3.1 LTL

In the Boolean semiring, LTL classifiers and autoregressors are equivalent, but the conversion from
an autoregressor to a classifier uses the Y and H operators.

Theorem 6.6. For any set of operators O C {Y ,H,S}:

(a) For any nonempty language L defined by a Boolean-weighted TL[O] classifier; there exists a
Boolean-weighted TL[O] autoregressor defining the same language L.

(b) For any language L defined by a Boolean-weighted TL|O] autoregressor, there exists a
Boolean-weighted TL|O U {Y, H}] classifier defining the same language L.

Proof. See §B.3. O

To prove this, we need to introduce two new operators as “syntactic sugar” that do not increase the
expressivity of the logic.

Lemma 6.7. There is a transformation next, from formulas of TL[O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € ¥*,

w = next, (¢) <= wo = ¢. (12)

Intuitively, next, removes a ¢ on the right; in other words, next, (¢) defines the right Brzozowski
derivative (Brzozowski, 1964) of the language defined by ¢.

Proof. See §B.1. O

Lemma 6.8. There is a transformation prefix from formulas of TL|O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all u € ¥*,

u | prefix(¢) <= there exists v € ¥.* such that uv = ¢. (13)
Proof. See §B.2. O

From Thm. 6.6, we can conclude that for UHATSs, which are equivalent to LTL, autoregression does
not add any expressivity. On other transformer variants, please see §6.3.2.

The construction in the proof of Lem. 6.8 yields a formula prefix(¢) whose size is exponential in
that of ¢. To shed light on whether this bound is tight, we show the following.

Proposition 6.9. (a) There does not exist a transformation prefix’ such that prefix’(¢) is con-
structible in polynomial time (in |$|) and satisfies Eq. (13) for every formula ¢ in TL[H,Y],
unless P = PSPACE.

(b) Similarly for TL[H], unless P = NP.
(c¢) Similarly for TL[Y], unless P = NP.

Proof. See §B.4. ]

Note that we have only shown (conditionally) that constructing prefix’(¢) requires super-polynomial
time; it’s possible that prefix’(¢) is short but difficult to construct.
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6.3.2 FRAGMENTS OF LTL

Li and Cotterell (2025) show that fixed-precision future-masked transformers are equivalent to
TL[P], which is in turn equivalent to TL[H]. Similarly, Jerad et al. (2025) show that future-masked
leftmost-hard attention transformers are also equivalent to TL[P]. However, in this section we show
that for autoregressors, these equivalences break.

When the set of operators O lacks either H or Y, the asymmetry in Thm. 6.6 suggests that Boolean
autoregressors are more expressive than classifiers. The following shows that this is indeed the case.

Proposition 6.10. The language (ab)* is defined by a Boolean TL[()] autoregressor but not defined
by any TL[H] or TL[Y] classifier.

Proof. Consider the state encoder ® = (BOS, a, b) and the output function

a(%os»‘]a»‘]b)(a) =T <= @sos Torg,=T
a(qsos, @a, @) () =T == qa =T

a(qsoss Ga> qp)(EOS) =T <= @gos = Torq, =T

But a formula in TL[Y] can’t distinguish between strings that differ beyond their last & symbols
(for some constant k depending on the formula), and for any k, we have ab(ab)/*/?! € (ab)* but
ba(ab)*/21 & (ab)*. A formula in TL[H] is equivalent to one in TL[P], which can only define a
stutter-invariant language (that is, a language L such that for all u, o, v, we have uov € L <=
ucov € L (Peled and Wilke, 1997)). And (ab)* is not stutter-invariant, because ab € (ab)* but
aabb & (ab)*. O

Consequently, (ab)* is definable by leftmost-hard UHATs and fixed-precision SMATs as autoregres-
sors, but not as classifiers. However, the expressiveness added by autoregression remains limited, as
(aab)* is not definable.

Proposition 6.11. The language (aab)* is not definable by any TL[H)| classifier or autoregressor.
Proof. See §D. O

Consequently, (aab)* is not definable by any leftmost-hard UHAT or fixed-precision SMAT, either as
autoregressors or classifiers.

6.3.3 TEMPORAL LOGIC WITH COUNTING

Other formalisms besides the ones discussed above have been proposed for comparison with trans-
formers. Yang et al. (2025) prove that SMATs, with fixed precision outside attention and arbitrary
precision inside attention, are equivalent to a temporal logic with counting operators, TL[#, +].
They considered the family of languages

Ll =a* (14)

Lipb*  keven
L = ’ 15

i {Lka* k odd (15)
and showed that, as Boolean classifiers, transformers with depth %k can recognize Ly (and not L 1).
But their experiments were on the symbol-prediction task (§2), closely related to Boolean autore-
gression. They showed both theoretically and experimentally that SMATs with depth £ can solve the
symbol-prediction task for not only Ly, but Lo (and not L 3).

In the present framework, this discrepancy can be readily explained. Like TL[H], the logic TL[#, +]
lacks a 'Y operator or an equivalent. So it is more expressive as an autoregressor than as a classifier.
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7 CONCLUSION

We have shown that theoretical results on transformers as Boolean classifiers (as most theoretical
results in the literature are) sometimes carry over to real-weighted and/or autoregressive settings, but
they sometimes do not. We have laid out a framework for studying other variants of transformers
and other automata or logics as real-weighted autoregressors, leading to theoretical results that can
make more accurate predictions about language models as used in practice.
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A EQUIVALENCE OF STATE ENCODERS

Theorem 6.1. UHATS, LTL, and cfDFAs define equivalent state encoders.

Proof. First we show the equivalence of state sequences defined by UHATs and LTL, and then equiv-
alence of LTL and cfDFAs.

The essential observation (Yang et al., 2024, Lemma 22) is that the output at every position of every
UHAT layer comes from a finite set Q C R?. So we can think of a UHAT as a function 7 : ¥* — Q*.
For each ¢ € (), we can construct an LTL formula ¢, such that 7 (w); = ¢ <= w,i = ¢, (Yang
et al., 2024, Theorems 2, 4). So there exists a tuple of LTL formulas (¢q)q€Q that defines a state
encoder equivalent to 7. Note that the state outputted by 7 on the prepended BOS symbol can be
simulated using a BOS formula in the tuple.

In the other direction, for every tuple of LTL formulas (¢1, ¢o, ..., ¢,,) defining a state encoder
¥* — B™, there exists a UHAT 7: ©* — (R%)* defining an equivalent state encoder. For each
¢k, we construct a transformer 75 which outputs % if w,i = ¢ and f% otherwise (Yang et al.,
2024, Theorems 1, 3). Then we can parallel-compose all the 7T, into a single 7 (Yang et al., 2024,
Lemma 25), and add an additional layer which projects the output dimensions of each 7 into a

single output vector R™ such that 7 (w); = e, <= w,i |= ¢.

The equivalence between LTL and cfDFAs can be described a little more succinctly. Given a DFA
M = (3,Q,9,:), for each state ¢ € () there exists a formula ¢, such that w = ¢, <= (¢, w) =
g, due to the expressive equivalence of LTL and cfDFAs (Schiitzenberger, 1965; McNaughton and
Papert, 1971; Kamp, 1968). The tuple (¢,),c then defines a state encoder equivalent to M. In the

other direction, given a tuple of LTL formulas (41, . .., ¢ ), for each k € [m] there is an automaton
Mj, that recognizes the same language as ¢. Then the Cartesian product of all the M}, defines a
state encoder equivalent to (1, . . ., Pm). O

B AUTOREGRESSIVE MODEL PROOFS

B.1 PROOF OF LEM. 6.7

Lemma 6.7. There is a transformation next, from formulas of TL[O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € ¥*,

w = next,(¢) <= wo = ¢. (12)

Proof. We define next, recursively:

next,(c) =T (16a)
next,(o’') = L ifo! 4o (16b)
next,(BOS) = L (16¢)
next, (—¢) = —mexty (@) (16d)
nexty (P1 A ¢2) = nexty(é1) A next, (d2) (16¢)
next, (Yo) = ¢ (16f)
next, (H¢) = Ho A next, (o) (16g)
nexty(¢1 S ¢2) = (nexty(P1) A (41 S ¢2)) V nexty(p2). (16h)

Note that next, never translates a temporal operator into another temporal operator, so it translates
formulas of TL[O] into formulas of TL[O] for any O.

Next, we prove that next,, (¢) satisfies Eq. (12) by induction on the structure of ¢.

Base Cases. If ¢ = o

S wET (17a)

LY o = o. (17b)

w, i = next, (o)

12
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If ¢ = o’ for o’ # o
w = next, (o)) L2 w1
WY o o
Similarly, if ¢ = BOS:

w = next, (BOS) L9 =L
L9 o = BOS.

Inductive Cases. If ¢ = —¢q:
w = next, (—¢1) SLLL = —mext, (¢1)
& w £ next, (¢1)
ind. hyp. wo Fé ¢1
Y e E —¢.
If ¢ =1 A ot
w = next, (41 A ¢2) L9 E next, (¢1) A next, (¢2)
2 (w k= nexty (¢1)) A (w | nexty (¢2))
"2 (wo = ¢1) A (wo = o)
L E o1 A ¢a.
6= Yo
w = next, (Yor) LAY E ¢
él—ﬁg wo 'ZYqbl
If ¢ = Hoy:
w E next, (He1) SLLE VR E H¢y A nexty(¢)
L2 (w = Hey) A (w = next, (¢)
M (w = Hey) A (wo = én)
1 wo = Hey.
If =1 S pa:

w ': neth(¢1 S ¢2)
L2 w = (next, (61) A (61°S ¢2)) V nexty (¢2)

(11a) and (11b) (

TR (wo = 1) A (w = ¢S ¢2)) V (wo = ¢o)
28 wo b= ¢ S g

B.2 PROOF OF LEM. 6.8

w = mexto (61) A (w = 61 S 62)) V (w = next, (62)

(17¢)
(17d)

(17e)
(171)

(18a)
(18b)
(18¢)
(18d)

(18e)
(18f)
(18¢g)
(18h)

(18i)
(18))

(18k)

(181)
(18m)
(18n)

(180)
(18p)
(189)
(18r)

Lemma 6.8. There is a transformation prefix from formulas of TL[O] to formulas of TL[O] such

that for any formula ¢ of TL[O] and for all u € ¥*,

u = prefix(¢p) <= there exists v € ¥ such that uv |= ¢.

13)

Proof. Given a formula ¢ of TL[O], let cl(¢) be the set of all subformulas of ¢ (including ¢ itself).

Construct a DFA M, = (2€1(9) %3, 6,1, F), where

v={xec¢)|ekx}
F={UCclp)|¢ec v}

§(¥,0) ={xed()|¥=x}

13

19)
(20)
1)
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where the relation ¥ % y, which intuitively means that if a string w satisfies exactly the formulas
in U, then wo satisfies , is defined as follows:

U5 oliffo =0 (22a)
(22b)
(22¢)
(22d)
(22e)

(22f)

\I!i>xl/\xgiff\Ill>X1and\I/i>X2
U % —yiffnot ¥ % x
UL Yyiffy €U
UL Hyiff Hy € Vand U 5 y
U5 x1Sxeiff((1Sx2 € Pand ¥ % x)or U % .

Claim B.1. Forany w € X%, if U = {x € cl(¢) | w |= x}, then ¥ %5 x <= wo [= .

Proof. By induction on the structure of x. Note by definition that y € ¥ <= w = y.

22a
%o B

5 1 ld:
22b
ind. hgp
i 1 lb!

T i) X 220!
ind. hgp.

11a

\I/i>X1/\X2

v i) X1 SXQ @
ind. hyp.

ég

Claim B.2. For any w, §(¢t, w) = {x

wo =o'

\Ilim(land\llim(g

wo = x1 and wo = xo

wo = x1 A X2-

not U % y

not wo = x

wo = —x.

x €V

w = x

wo = Yy.

HycPand ¥ % y

w = Hy and wo | x

wo = H.
(x1Sx2€Vand ¥ % y1)or U % xy
(wE x1 S x2 and wo = x1) or wo | x2
wo = x1 S Xa.

€ cl(¢) | w = x}-

Proof. By induction on the length of w.

Base case: §(t, ) =t ={x | e = x}-

Inductive step: Assume that (¢, w) = {x | w | x} = ¥. Then
(1, w) = 0(5(1, w), 0)

=46(¥,0)

={x|¥ > x}
= {x | wo = x}

Claim B.3. M defines the same language as .

Proof. §(1,w) € F if and only if ¢ €

{x | w [ x} if and only if w |= ¢.

14
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Then make every co-accessible state (every state that has a path to an accept state) into an accept
state. Call this new DFA M (; with accept states F”. This DFA recognizes the prefix language of M.
Finally, construct the formula

prefix() = \/ | Axr A«

WeF! \xev¥ XEcl(p)\¥

Note that prefix never translates a temporal operator into another temporal operator, so it translates
formulas of TL[O] into formulas of TL[O] for any O.

Claim B.4. The formula prefix(¢) defines the same language as M.

Proof. Since we only changed non-accept states to accept states, Clm. B.2 still applies to M é) and ¢.

w e L(M}) < 6(t,w) € F'
— {xec¢)|wkEx}elF Clm. B.2
< forsome ¥V € F', y € Viffw = x

<:>forsome\I/€F’,w):/\x/\ /\ =X

xev X€Ecl(p)\ ¥
= wkE \/ /\ X A /\ -x | - O
WeF! \xeY XEcl(p)\ ¥
This completes the proof of Lem. 6.8. O

B.3 RELATIONSHIP BETWEEN CLASSIFIERS AND AUTOREGRESSORS

Theorem 6.6. For any set of operators O C {Y ,H,S}:

(a) For any nonempty language L defined by a Boolean-weighted TL[O] classifier, there exists a
Boolean-weighted TL|O] autoregressor defining the same language L.

(b) For any language L defined by a Boolean-weighted TL|O] autoregressor, there exists a
Boolean-weighted TL|O U {Y, H}] classifier defining the same language L.

Proof. (a) A Boolean-weighted TL[O] classifier is defined by a tuple of formulas ® = (41, ..., ¢m)
and an output function c: B" — B. We may think of ¢ as a Boolean combination of its arguments,
and substitute the ¢; into it to obtain a single formula ¢ = ¢(¢1, . . ., ¢, ). Then define a new trivial
output function ¢’ (h) = h, so that the classifier (¢, ¢’) defines the same language as (P, ¢).

Define
¢ = next, (prefix(¢)) foroc € ¥ (23)
¢Eos = ¢ (24)

Then the tuple of formulas ®" = (¢5),exu{ros} defines a state encoder. We define the autoregres-
sive output function

a: BFH 5 pl=Ht (25)
h, if any entry of h is true

h = 26

a(h)(o) { T if all entries of h are false. (26)

A vector h whose entries are all false is unreachable, so it does not matter what we set a(h) to, but
it must satisfy @ _ a(h)(c) = 1 (Eq. (7)), that is, the entries of a(h) cannot all be false.

15
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The autoregressor A = (®’, a) defines L, because for any w € L with length n, we have

Pra(w) = Q) Pra(w; | we;) ® Pra(E0s | w) 27)
i=1
= A\ T{wi |= nexty, (prefix(¢)} A T{w = ¢} (28)

~
—

Hw<; [ prefix(¢)} Al{w = ¢} (29)

I

.;
Il
-

I
=

I{w<;v = ¢ for some v} Al{w = ¢} (30)

Il
ol

: (3D
On the other hand, for any w ¢ L, let k be the greatest integer such that w.rv € L for
some v. (We know that k exists because L is nonempty by assumption.) Then we have that
Wey = nexty,, (prefix(¢)), but woy, = next,, (prefix(¢)). So Pry(wy, | w<x) = L, and therefore
Pra(w) = L.

It remains to verify that A satisfies Eq. (6). For any u € X*, we want to show that

]

@PrA(v | u) = @ ®PrA(vi | uv<;) ® Pra(EOS | uv) | = 1. (32)

v i=1
In the Boolean semiring, it suffices to show that at least one term of this summation is true.

If there is a v such that uv € L, then the corresponding term of the summation is

|uvl
/\ TH{uv<; = nexty, (prefix(¢))} | AT{uv = ¢} (33)
=1
uv|
= | )\ Huvs, = prefix(¢)} | AT{uv = ¢} (34)
=1
uv|
= /\ I{uv<,w = ¢ for some w} | Al{uv = ¢} (35)
=1
=T. (36)

If there is no such v, then for all o, we have uo [~ prefix(¢), so u = next, (prefix(¢)); moreover,
u = ¢. Leth = ®'(u)), be the state after reading u. All entries of h are false, which makes (for
example) a(h)(EOS) true, so the v = € term of the summation in Eq. (32) is true.

(b) Let A = (@, a) be a TL[O] autoregressor, where & = (¢; )7 ;.

Define
én = [\ (¢ < hi) forh € B™
=1
¢s = N\ (¢n ¢ a(h)(0)) for o in ¥ U {EOS}.
heB™

Intuitively, ¢y, is true whenever the state encoder is in state h, and ¢, is true whenever the state
encoder is in a state in which a predicts o.

Then, define
¢ =H \V/  (Yéo) Ao
oc€XU{EOS}
and let ¢(h) = h, so that the classifier C' = (¢’, ¢) defines the same language as A. O

16



Preprint

B.4 PROOF OF PRrOP. 6.9

Proposition 6.9. (a) There does not exist a transformation prefix’ such that prefix’(¢) is con-
structible in polynomial time (in |p|) and satisfies Eq. (13) for every formula ¢ in TL[H, Y],
unless P = PSPACE.

(b) Similarly for TL[H], unless P = NP.
(c) Similarly for TL[Y), unless P = NP.

Proof. (a) Suppose that prefix’ exists. For any formula ¢ of TL[H, Y], we can test whether ¢ is
satisfiable by constructing prefix’(¢) in polynomial time (by assumption) and then testing whether
e preﬁx’(¢), which can also be done in polynomial time, as shown by Fionda and Greco (2016,
Thm. 8). (They assume formulas in negation normal form, but it is easy to generalize their result
to formulas not in negation normal form.) But satisfiability in TL[H,Y] is PSPACE-complete
(Giacomo and Vardi, 2013; Fionda and Greco, 2016), so this would imply P = PSPACE.

(b) Similarly, satisfiability in TL[H] is NP-complete (Fionda and Greco, 2016), so the existence of
a polynomial-time prefix’ would imply P = NP.

(c) Same as the previous case.

C NONDETERMINISTIC FINITE AUTOMATA

We give a single definition of weighted NFAs instead of factoring them into unweighted NFAs and
autoregressive output functions.

Definition C.1 (Weighted Nondeterministic Finite Automaton). A weighted nondeterministic finite
automaton is a tuple M = (X, Q, 0, o, w), where

* Y is an alphabet

* @ is a finite set of states

* §: Q x X x Q — Kis atransition function

* 1L € Q is the initial state

* w: @ — Kis an ending weight.

We extend 6 to 6*: Q x ¥X* x Q — K.

§*(g.6,q) =1
0*(¢,6,4) =0 q#4q

0* (qla ow, QQ) = @ 5((]17 g, Q) ® 5* (Q7 w, q?)
q€Q
Then M accepts w with weight k iff
k= @ 6*(1’7 w, (I2) ® W(qg)
q2€Q
Definition C.2. We say that an NFA with transition function § is counter-free if there exists some k

such that for all states q,, qo and all strings w, we have §*(q1, w*, qz) = §* (g1, w**1, go).

A weighted automaton is determinizable if every every pair of states which are siblings (can be
reached by the same string) are also twins (all cycles by the same string have the same weight)
(Mohri, 1997). The automaton in Fig. 2c is counter-free because for any pair of states ¢, g2 and any
string w, we have that §* (g1, w, g2) = d*(q1,w?, q2). However, it is not determinizable because

q1 and ¢o are siblings (both reachable by a) but not twins (the a-labeled cycles gq; a/—§> q1 and

3
Q2 (1/_4> g2 on the two states have different weights).

17
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D INEXPRESSIBILITY OF (aab)*

Proposition 6.11. The language (aab)* is not definable by any TL[H)| classifier or autoregressor.

We actually prove a slightly stronger statement. Define the Y -depth of a formula ¢ to be the number
of nested Y operators in ¢. Then we will prove that (aab)* is not definable by any formula of
TL[H, Y] with Y-depth 1. Since the conversion from an autoregressor to a classifier (Thm. 6.6(b))
adds a single Y, we will conclude that (aab)* is not definable by any TL[H] autoregressor.

Lemma D.1. For any language L over Y, define Bigram(L) = {(BOS,w;) - (wy,ws) -
(wa,w3) - (Wp—1,wp) - (Wy,EOS) | w € L} If ¢ is a formula of TLIH,Y]| with Y-
depth 1, then there is a formula noy(¢) of TLH] over (¥ U {BOS}) x (X U {EOS}) such that
L(noy(¢)) N Bigram(X*) = Bigram(L(¢)).

Proof. Define the transformation noy, which pushes Y down to the atomic formulas, then modifies
the atomic formulas to operate on bigrams.

noy(—p) = —noy(¢) n0y(Y (—¢)) = —noy(Yv)
noy (11 A ¢2) = noy(¢1) Anoy(¢2)  noy(Y(¢1 A¢2)) = noy(Yer1) A noy(Yo)
noy(Hv) = H(noy(¢)) noy (Y (Hv)) = H(noy(Y))
noy(o)= \/ (¢',0) noy(Yo)= \/ (0.0)
o’eXU{BOS} o’ eXU{E0s}
noy(BOS) = BOS noy(YBos)= \/  (Bos,o’). O

o’ €XU{EOS}

Then, to prove that (aab)* is not definable in TL[H, Y] with Y-depth 1, suppose it is definable by
¢. By Lem. D.1, there is a formula noy(¢) of TL[H] such that

(BOS, a) - (a,a) - (a,b) - (b,E0S) € L(noy(¢)) N Bigram(X™).
But £(noy(¢)) must be stutter-invariant (Peled and Wilke, 1997), so we also have
(BOS,a) - (a,a) - (a,a) - (a,b) - (b,E0S) € L(noy(¢)) N Bigram(Z*).

But this is not in Bigram((aab)*), which is a contradiction.
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