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Abstract

Large language models rely on real-valued
representations of text to make their predic-
tions. These representations contain informa-
tion learned from the data that the model has
trained on, including knowledge of linguistic
properties and forms of demographic bias,
e.g., based on gender. A growing body of
work has considered removing information
about concepts such as these using orthogo-
nal projections onto subspaces of the repre-
sentation space. We contribute to this body
of work by proposing a formal definition of
intrinsic information in a subspace of a lan-
guage model’s representation space. We pro-
pose a counterfactual approach that avoids
the failure mode of spurious correlations (Ku-
mar et al., 2022a) by treating components in
the subspace and its orthogonal complement
independently. We show that our counter-
factual notion of information in a subspace
is optimized by a causal concept subspace.
Furthermore, this intervention allows us to
attempt concept controlled generation by ma-
nipulating the value of the conceptual com-
ponent of a representation. Empirically, we
find that R-LACE (Ravfogel et al., 2022a) re-
turns a one-dimensional subspace containing
roughly half of total concept information un-
der our framework. Our causal controlled in-
tervention shows that, for at least one model,
the subspace returned by R-LACE can be
used to manipulate the concept value of the
generated word with precision.

1 Introduction

Autoregressive large language models (LLMs)
generate representations of words and their textual
contexts to perform next word prediction. Given
their ability to generate naturalistic text, it is
reasonable to assume that the representations
induced by language models encode some notion
of world knowledge. For instance, we may suspect
that a language model contains knowledge about

the concept of a bird1 if it, when prompted, is
able to generate a plausible story about birds flying,
making nests, laying eggs, etc. Similarly, it seems
reasonable to assume that a language model has
some knowledge of linguistic concepts such as
verbal-number since almost all sentences gener-
ated by the model are syntactically correct, e.g., in
generated text in English verbs agree with their sub-
jects in number. This paper assumes that language
models deal in underlying concepts. We make this
assumption to see whether it can help us better
understand how LLMs make predictions, and how
these predictions can be controlled. This assump-
tion has two implications, which we explore in this
paper. First, that the model has the ability to asso-
ciate a textual context with a concept, and that this
association impacts the causal generative process
of the language model. Second, that there exists
a geometric encoding of concept knowledge in a
language model’s representation space.2 Studying
these requires nailing down an operational defini-
tion of a concept so mathematically precise as to be
able to be tested, which is a non-trivial endeavor.

The reliance of language models on concepts
to make predictions, especially linguistic concepts
such as verbal-number, is a well-studied phe-
nomenon (Ravfogel et al., 2021; Lasri et al., 2022;
Amini et al., 2023). Early methods examined
this question using a forced-choice experimen-
tal setup, by for example testing whether a lan-
guage model has correctly learned the concept of
verbal-number by asking it to choose between a
grammatical and an ungrammatical variant of a
sentence (Linzen et al., 2016; Marvin and Linzen,
2018; Goldberg, 2019; Lasri et al., 2022). Consider,
for example, the sentences:

(1) a. The kids walk to the park.

1Throughout the text, we will use a distinguished typeset-
ting to refer to concepts. For instance, the concept of a bird is
written as bird.

2For now, we define a representation space simply as the
d-dimensional vector space that a language model relies on to
encode text. We propose a more formal definition in §2.
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the.PL kids.PL walk.VBP to the.SG
park.SG

b. ∗The kids walks to the park.
the.PL kids.PL walks.VBZ to the.SG
park.SG

In the case of verbal-number, Goldberg (2019)
shows that when the model is forced to choose
between two such variants it has nearly perfect
accuracy. In this paper, we seek to go beyond ex-
trinsic measurement of whether a language model
is capable of choosing between sentence (1-a) and
sentence (1-b).

Our primary contribution is to construct a
geometric notion of what it means for a neural lan-
guage model’s representation space to have infor-
mation about a concept. We build on the proposal,
given by Bolukbasi et al. (2016) and Ravfogel et al.
(2022a), who argue that concepts are naturally
operationalized by linear subspaces. Linear sub-
spaces are a convenient operationalization because
they lend themselves to tractable algorithms, and
they are inherently equipped with a basic notion
of interpretability, in that they represent a concept
geometrically. Existing work (Lasri et al., 2022;
Ravfogel et al., 2023) has relied on V-information
(Xu et al., 2020) to quantify the amount of infor-
mation in the representation space of a language
model, before and after concept erasure. This mea-
sure is extrinsic to the language model, in the sense
that it measures information by asking, for a par-
ticular variational family V of classifiers, how well
the concept can be predicted by these classifiers.
In contrast, we propose an information-theoretic
(Shannon, 1948) definition of information, which
is intrinsic to the language model, by which
we mean that information is quantified using
distributions induced from the language model,
i.e., without relying on an additional classifier.

We show, via a counterexample, that a naïve ap-
proach to measuring intrinsic information falls vic-
tim to spurious correlations (Kumar et al., 2022b).
We then explain how to construct a counterfactual
distribution that avoids this pitfall. Specifically, we
perform an intervention that results in the concept
subspace and its orthogonal complement being in-
dependent, which allows us to compute information
contained in either subspace while marginalizing
out the other. This approach is counterfactual in
the sense that it creates representations that would
not otherwise occur under the language model.
Crucially, it allows us to talk about the mutual in-

formation between linear subspaces and concepts.
Making use of our counterfactual framework,

we derive four properties that characterize a precise
geometric encoding of a concept. First, erasure
is the condition that the orthogonal complement
of the isolated subspace should contain no
information about the concept. Second, the related
property of encapsulation states that projecting
a representation onto our concept subspace should
preserve all the information about the concept.
Third, stability quantifies the requirement that
projection onto the orthogonal complement of our
concept subspace should preserve non-concept
information. Finally, containment ensures that
the concept subspace does not contain additional
information beyond the concept.

Empirically, we study verbal-number in En-
glish and grammatical-gender in French. We
find, for both concepts, that R-LACE (Ravfogel
et al., 2022a) yields a one-dimensional concept
subspace which, according to our novel counter-
factual metrics, contains a large share of concept
information while leaving non-concept information
untouched. We then leverage our intrinsic measure
of information to posit a causal graphical model
by which a latent concept may govern LLM text
generation. Our graphical model and our inde-
pendence assumption enable us to derive a causal
controlled generation method by manipulating the
conceptual component of a representation. And,
indeed, we find evidence that it is possible to use
a one-dimensional subspace to control the genera-
tion behavior of the language model with respect
to verbal-number.

2 Concepts and Information

We begin by formally defining a language model,
and what it could mean for a language model
to encode a concept in its representation space.
We take an information-theoretic approach.
Specifically, we claim that, if a concept is encoded
in a language model’s representation space, then
we should see high mutual information between
its representations and the concept of interest.

2.1 Language Modeling Basics

A language model is a probability distribution p
over Σ∗, the Kleene closure over an alphabet3 Σ.
We further define Σ

def
= Σ ∪ {EOS}, with EOS /∈ Σ

3An alphabet is a finite, non-empty set.



being a distinguished end-of-string symbol. With-
out loss of generality, we parameterize p in an au-
toregressive manner (Du et al., 2023) as follows:

p(x) = p(EOS | x)
T∏
t=1

p(xt | x<t) (1)

where xt ∈ Σ refers to tth word4 in a string x ∈ Σ∗,
where x<t represents the first (t− 1) words of x.

Many language models make use of contextual
representations, i.e., they typically encode a tex-
tual context x<t as a real-valued column vector
h(x<t) ∈ Rd. Generally, h(x<t) is determinis-
tically computed from the context string x<t, for
example by a neural network. The contextual repre-
sentations h(x<t) are integrated into the language
model’s parameterization, meaning p(xt | x<t) is
often parameterized using a softmax as follows

p(x | h(x<t))
def
=

exp (v(x) · h(x<t))∑
x′∈Σ exp (v(x′) · h(x<t))

(2)

where v(x) ∈ Rd, a column vector, is a word-
specific parameter vector.5 Under such a model,
the representation space of Eq. (2) is defined as

H
def
=
{
h(x) | x ∈ Σ∗

}
⊂ Rd (3)

where h(x<t) is a deterministic function of x<t.6

We remark that the cardinality of H is countably
infinite despite its elements being real vectors. This
is due to the fact that there exists exactly one rep-
resentation for every string in Σ∗, which is, itself,
countably infinite. Since H is countable, summing
over it is discrete and does not require integration.

2.2 Language Models and Concepts
We now discuss an exact sense in which a language
model can be said to encode a concept. First, we
define a concept based on the possible values it can
take. We formalize this with a concept set, a finite,
non-empty set C whose elements are those values.7

4We refer to x ∈ Σ as words for simplicity, even though
in the case of neural language models, these are often called
subwords, tokens, or symbols.

5We have omitted the bias term without loss of generality
as we can always pad the contextual representations by a
single dimension.

6We relax this assumption later on, such that h(x<t)
can be stochastic given x<t. One example of a language
model with stochastic contextual embeddings is Bowman
et al. (2016).

7In principle, the concept sets could be infinite if additional
care is taken in the formal development.

If we consider the concept set corresponding to
verbal-number, it is natural to include three val-
ues: sg (e.g., walks), pl (e.g., walk), and n/a (e.g.,
consternation). For various reasons, including syn-
cretism (Baerman, 2007), some verbs in English
can have ambiguous concept value depending on
context. For example, the you in the sentence “You
walked to the store.” can be sg or pl. We find sim-
ilar facts for other concepts in different languages.
For instance, for grammatical-gender in French,
the adjective marron can be both fem and msc.

To relate language models to concept sets, we in-
troduce a deterministic probability distribution ι(c |
x<t, x). ι tells us the probability that, in the sequen-
tial context x<t ∈ Σ∗, word x ∈ Σ is annotated
with the concept value c ∈ C. We assume that ι is
deterministic, i.e., we have ι(c | x<t, x) ∈ {0, 1}
for all c ∈ C, x ∈ Σ, and x<t ∈ Σ∗. We acknowl-
edge that this is an oversimplification—indeed, we
just exhibited an example where a verb had ambigu-
ous verbal-number given full sentential context.
Nevertheless, this assumption will prove useful
in the experimental portion of our paper. More-
over, we relax the assumption in §4 by proposing
a stochastic operationalization of concepts.

To illustrate this formalism, consider the concept
verbal-number and sentences (1-a) and (1-b).
The concept set for verbal-number is C =
{sg, pl, n/a}, and ι maps as follows:

• ι(sg | The kids,walk) = 0

• ι(pl | The kids,walk) = 1

• ι(n/a | The kids,walk) = 0

• ι(sg | The kids,walks) = 0

• ι(n/a | The kids, consternation) = 1

We now use ι to construct a joint distribution over
strings and concept sequences as follows:

p(c,x)
def
= (4)

p(EOS | x)
T∏
t=1

p(xt | x<t)ι(ct | x<t, xt)

where c ∈ CT . Where does p(c,x) get us? Our
ultimate goal is to talk about the information
shared between a concept, with values C, and
representations H, and discussing information in
a mathematical manner requires probability.



2.3 Unigram Information

To construct a mutual information between the
model’s notion of a concept and its contextual
representations, we require a joint distribution be-
tween a concept-valued random variable and a
representation-valued random variable. Impor-
tantly, in order for our information measure to be in-
strinsic, we must obtain this joint distribution using
our language model. We now build our information-
theoretic framework in this section, first by intro-
ducing a probability distribution over representa-
tions, and then by integrating concepts using ι.

We begin by defining the induced unigram dis-
tribution of the language model. In words, the
induced unigram distribution is a marginal distribu-
tion of the language model that tells how frequently
each word x ∈ Σ appears, on average, in a string
x ∼ p. The induced unigram distribution is for-
mally defined as

pu(x)
def
=
∑
x∈Σ∗

p(x)

∑T
t=1 1{x = xt}

T
(5)

We can further augment the induced unigram dis-
tribution to expose the language model’s represen-
tations. This leads to a joint induced unigram over
both words and representations; we define this joint
distribution as

pu(x,h)
def
= (6)

∑
x∈Σ∗

p(x)

∑T
t=1 1

{
x = xt ∧ h = h(x<t)

}
T

The joint word–representation induced unigram
distribution pu tells us the frequency with which a
word x ∈ Σ co-occurs with a representation h ∈ H.
We can use this joint word–representation distribu-
tion to define the following mutual information
between words and representations

I(X;H) =
∑
x∈Σ

∑
h∈H

pu(x,h) log
pu(x,h)

pu(x)pu(h)
(7)

where H is a H-valued random variable. Eq. (7)
tells us how much information, on average, a
representation h ∈ H tells us about the identity of
a word x ∈ Σ.

We have now established how to think proba-
bilistically about representations jointly with words.
However, we are primarily interested in the relation-
ships between concepts and representations. Using

ι, we can define a concept–representation induced
unigram distribution as

pu(c,h)
def
= (8)

∑
x∈Σ∗

p(x)

∑T
t=1 ι(c | x<t, xt)1

{
h = h(x<t)

}
T

where the only difference, relative to Eq. (6), is that
we count instances of concept values mapped from
context strings and words via our distribution ι. We
can now use our induced concept–representation
unigram to compute our intrinsic measure of
concept information in representations:

I(C;H) =
∑
c∈C

∑
h∈H

pu(c,h) log
pu(c,h)

pu(c)pu(h)
(9)

where the Σ-valued random variable X is replaced
with a C-valued random variable C. Eq. (9) allows
us to precisely define the information between a
concept and a representation in a rigorous way.

By relating words in Σ to concept values in C
with ι, we have reformulated the language model
as a joint concept–string model. From this joint
model, we can derive an information-theoretic
framework for evaluating how much information
the model’s representations contain about a
concept. Importantly, the language model is a first
class citizen in the mutual information in Eq. (9):
Aside from ι, all of the components are derived
from the language model, and it is computed in
expectation over samples drawn from the model’s
joint concept–representation unigram distribution.
ι is the only ingredient that we have added, and
it is non-parametric and rather uncontroversial.
This means we are focusing on the model’s notion
of a concept, and has implications for how this
quantity can be computed empirically. We discuss
this point in §2.4.

Lastly, we define the following conditional mu-
tual information:

I(X;H | C) = (10)∑
c∈C

∑
x∈Σ

∑
h∈H

pu(x,h, c) log
pu(x,h | c)

pu(x | c)pu(h | c)

where pu(x,h, c) is trivially obtained by combin-
ing approaches used to derive Eq. (6) and Eq. (8).
This quantity measures, given a particular concept
value c ∈ C, how much additional information
about a word x ∈ Σ is encoded in the model’s



representations. Recall that with I(X;H) defined
in Eq. (7), we quantified information about the
next word contained in the language model’s rep-
resentation space. Conditioning this quantity on a
particular C = c value reveals a lot about the iden-
tity of the next word. For example, conditioning
on C = sg for verbal-number tells us that the
next word x encoded by X is sg.8 Eq. (10) mea-
sures how much additional information, relative
to the model’s unigram distribution over sg verbs
pu(x | sg), a representation h(x<t) provides about
the identity of the sg verb to follow x<t.

2.4 Interfacing with Other Distributions

For an autoregressive language model like the one
defined in Eq. (1), our various mutual informa-
tion measures defined in Eqs. (7), (9) and (10) are
taken in expectation with respect to the induced
unigram pu. This means we can only estimate
these quantities by generating samples from the
language model. However, in practice, it has been
noted that autoregressive language models often
generate strings that are judged to be unnatural by
humans (Holtzman et al., 2020). We found our
samples generated using ancestral sampling to be
of poor quality, meaning that the correct concept
value was extremely unclear relative to, for exam-
ple, sentence (1-a). For that reason, it may be wise
to consider computing the expectation with respect
to a different language-generating process, i.e., a
different distribution over strings. Thus, we also
generalize our information-theoretic framework to
handle this case.

Let p̃ be a distribution over Σ∗, which we as-
sume we can easily draw samples from. In the
general case, p̃ will be different than p. Define the
following induced unigram distribution

p̃u(c,h)
def
= (11)

∑
x∈Σ∗

p̃(x)

∑T
t=1 ι(c | x<t, xt)1

{
h = h(x<t)

}
T

where the expectation is taken with respect to p̃,
but the hidden states h(x<t) are computed accord-
ing to the autoregressive neural language model p.
Using p̃u, we can define a concept–representation

8We have defined the probability of a concept value c via
ι(c | x<t, x), i.e., as a function of textual context and a word.
Conditioning on C = sg amounts to reverse engineering—we
consider only samples (x,h(x<t), c) ∼ pu such that C = sg
and ι(sg | x<t, x) = 1.

mutual information Ip̃u(C;H) that relativizes the
language model’s p with respect to p̃.

In the experimental section §5, we consider two
language generating processes other than language
model p: Natural language text from several cor-
pora, and text generated from the language model
using nucleus sampling (Holtzman et al., 2020).
Having established our information-theoretic
foundation, and explained how to compute it, we
now specify how we expect concept information
to be encoded in representations, in the form of a
linear concept subspace.

3 A Geometric Encoding of Concepts

In this section, we explore how concepts are geo-
metrically encoded in a language model’s represen-
tation space H. The linear subspace hypothesis
(Bolukbasi et al., 2016) postulates that there ex-
ists a linear subspace SC ⊆ H that contains all
of the information about a concept with values C.
This hypothesis has been tested on various linguis-
tic concepts, including verbal-number (Ravfogel
et al., 2021; Lasri et al., 2022; Amini et al., 2023)
and grammatical-gender (Amini et al., 2023).
Inspired by their work, we posit a possible char-
acterization of the representation space in which
every h ∈ H has a conceptual component and
an orthogonal, non-conceptual component. Under
that assumption, we decompose the representation
space H into these two subspaces–specifically, two
linear subspaces orthogonal to each other. Then,
using our concept–representation mutual informa-
tion defined in Eq. (9), we quantify the amount of
concept information encoded in a subspace of a
language model’s representation space.

Such an information-theoretic partition of the
representation space feels very natural, yet it
is misleading. We show, via a counterexample,
that isolating information about a concept to
a subspace can be impossible without erasing
information about other aspects of the context as
well. Instead, we propose an alternative framework
of quantifying the erasure of information using
counterfactual distributions over the concept and
non-concept partitions, which allow us to control
for the common-cause confounding effects.

3.1 Concept Partition

We begin by reviewing a bit of linear algebra. A
linear subspace S ⊆ Rd may be characterized
by an orthogonal projection matrix P ∈ Rd×d



that maps any vector in Rd onto S. Such a
projection matrix has the following properties:
i) symmetry, i.e., P = P⊤, ii) idempotence, i.e.,
P 2 = P , iii) orthogonality, i.e., Ph = projS(h),
where projS is the orthogonal projection operator.
We note that the rank k of a projection matrix
P k ∈ Rd×d determines the dimensionality of the
subspace that it characterizes. Furthermore, for
such a P k, Id − P k, where Id the d× d identity
matrix, is also an orthogonal projection matrix. It
orthogonally projects onto the (d−k)-dimensional
orthogonal complement of S, denoted S⊥. In this
sense, a projection matrix P partitions a vector
space into two subspaces S and S⊥.

Now, given a concept set C, we define a partition
of a language model’s representation space H
into a concept subspace SC and its orthogonal
complement, the non-concept subspace S⊥C . We
refer to P k ∈ Rd×d as the rank-k orthogonal
projection matrix that projects onto k-dimensional
S⊥C , i.e., P kh = projS⊥C (h). In turn, Id − P k

projects onto our (d − k)-dimensional concept
subspace SC , such that (Id − P k)h = projSC(h).
What makes SC a concept subspace, and S⊥C a
non-concept subspace? The partition of H into SC
and S⊥C is an information partition.

We use Eq. (9) to define the information about
the concept encoded in both. Consider, for exam-
ple, information in S⊥C about C on average over
textual contexts

I(C;P kH) = (12)∑
c∈C

∑
h∈H

pu(c,P kh) log
pu(c,P kh)

pu(c)pu(P kh)

where the language model’s representations are or-
thogonally projected onto S⊥C using P k. Eq. (12)
relates the geometric notion of a linear subspace
with the information-theoretic notion of informa-
tion. Thus, if I(C;P kH) is low, we can say that
P k erases a lot of concept information in H by
projecting onto the subspace S⊥C . On the other, if
I(C;P kH) is high, we can say it erases little infor-
mation. In the remainder of this paper, for brevity,
we refer to H∥

def
= {(Id − P k)h | h ∈ H},H⊥

def
=

{P k | h ∈ H} as random variables corresponding
to contextual representations projected onto con-
cept and non-concept subspaces, respectively.

3.2 The Perils of Correlation
Eq. (12) suggests an attractive property we might
ask from P k: It should satisfy I (C;P kH) = 0,

v(goes)

v(go)

v(walks)

v(walk)

number

lemma v(goes)

v(go)

v(walks)

v(walk)

number

lemma

h(The kids)

h(The kids)

Figure 1: An example erasure of a correct
verbal-number subspace, when predicting the
next word given “The kids”.

walks walk goes go

sg 0 0 0.7 0
pl 0 0.3 0 0

(a) Joint unigram distribution of verbal-number and word.
The word walk is only used as pl and go only as sg.

walk go

sg 0 1
pl 1 0

(b) Distribution of verbal-number given the word.

Table 1: Probability distribution of the example.

i.e., it should completely erase the information
about the concept by projecting onto S⊥C . How-
ever, as we show next, this is a naïve characteri-
zation. We illustrate the notion of a concept sub-
space with an example inspired by Kumar et al.
(2022b), as shown in Fig. 1. In the example, the
representation space is two-dimensional with the
y-axis representing the correct subspace encoding
the concept verbal-number, while the x-axis en-
codes the lemma. Together, these comprise all of
the information stored in word representations v(x)
and contextual representations h(x<t). On the left,
we have the original representation space, and on
the right, we have the space resulting from erasing
information in our concept subspace, i.e., setting
the y-coordinates of all vectors in the space to 0.
Such a transformation constitutes successful era-
sure in the sense that it works on the correct linear
subspace.9 To the extent that such a subspace exists

9We could also say that the erasure works with the causal
subspace, in the sense that manipulating the values of that
subspace would result in changing the precisely the concept



in reality, finding the P k that erases this subspace
seems like the correct objective.

Now, consider the hypothetical joint word–
concept unigram distribution pu(x, c) in Table 1a.
Under this distribution, a projection matrix P k

that erases the correct y-axis as shown in Fig. 1 is
not the minimizer of Eq. (12). That is because H⊥
(x-axis) and H∥ (y-axis) are heavily correlated
while being perpendicular to each other. This
means that I(C;H⊥) = 0.88 > 0 in our toy ex-
ample in Fig. 1—unless P k = 0. Requiring P k to
satisfy I(C;H⊥) = 0 is thus not a feasible charac-
terization for our problem—in the example above,
achieving that would require removing the entire
representation space. Altogether, this simple exam-
ple exposes a crucial issue with linear concept era-
sure: While characterizing the concept subspace-
defining projection matrix with I(C;H⊥) = 0
might seem like a sensible idea, achieving this
might result in the removal of correlated informa-
tion and not identify the correct (causal) subspace,
even if one exists (Kumar et al., 2022b).

3.3 A Counterfactual Unigram Distribution

The underlying problem with the example given in
§3.2 is that H∥ and H⊥ have common cause that
introduces a spurious correlation—the Σ∗-valued
context random variable X<t. Although this vari-
able is not included in the example, it explains
why Table 1a is plausible—the word walk only co-
occurs with pl context strings x<t, and goes with sg
context strings. So, how do we account for the in-
terplay between the geometry of the space and our
probabilistic framework to obtain an information-
theoretic objective that helps us identify the correct
concept encoding?

The answer is actually relatively simple. Our
problem is that I(H⊥;H∥) > 0, i.e., these vari-
ables are not statistically independent. We resolve
this issue by building a variant of our information-
theoretic objective in Eq. (12) that assumes these
two variables are statistically independent, i.e.,
I(H⊥;H∥) = 0. Notice that, under this assump-
tion, H⊥ would contain no information about the
concept, and identification of H∥ would be possi-
ble via mutual information. We build this assump-
tion into our framework by breaking the statistical
relationship between the variables. Note that, al-
though this assumption likely never holds for a con-

encoded by the representation while leaving other aspects
about the it intact.

cept in practice, this does not matter here—we are
crafting a metric under which the correct subspace
will be optimal.

We begin by considering how we went about
computing I(C,H⊥). We denote with h∥

def
= (Id−

P k)h and h⊥
def
= P kh the projections onto the

concept and non-concept subspace for h ∈ H. We
relied on our induced unigram pu(c,h), and simply
plugged in h⊥. This was wrong—we instead have
to compute:

pu(x | h⊥) =
∑
h′
∥

p(x | h⊥,h∥)pu(h
′
∥ | h⊥) (13)

Importantly, the dependence between h⊥ and h∥
means that pu(h′

∥ | h⊥) only ever assigns proba-
bility mass to the pair (h⊥,h∥), i.e., there is only
ever one h∥ to go with each h⊥ in practice. This
results in

pu(x | h⊥) = p(x | h⊥,h∥) (14)

under which I(C,H⊥) = I(C,H). This is just
another way of explaining why, even after erasing
h∥, we recover information about the concept
from h⊥. Statistical independence is defined as
pu(h⊥,h∥) = pu(h⊥)pu(h∥), so we look at the
marginal distributions of these variables more
closely.

Marginalizing with respect to the induced uni-
gram distribution defined in §2, we arrive at the
following marginal unigram distributions:

pu(h⊥)
def
=
∑
h∈H

1{h⊥ = P kh}pu(h) (15)

pu(h∥)
def
=
∑
h∈H

1{h∥ = (Id − P k)h}pu(h) (16)

We now construct a variant of our induced
unigram pu(x, c,h) that assumes independence
between h⊥ and h∥, i.e., pu(h) = pu(h⊥,h∥) =
pu(h⊥) pu(h∥). We refer to this definition as
the counterfactual unigram distribution qu,
because we are assigning probability mass to
(h⊥,h∥) pairs which, under pu(h), would have
zero probability. The definition is given below

qu(x, c,h∥,h⊥)
def
=

∑
x<t∈Σ∗

ι(c | x,x<t) (17)

p(x | h∥,h⊥) p(x<t) pu(h∥) pu(h⊥)

Intuitively, this quantity measures the probability
of the word–concept pair (x, c) jointly with a



representation h⊥+h∥ that may not exist in reality,
thanks to the factorized unigram distributions of
h∥ and h⊥. The choice of the name counterfactual,
as well as the implications of this decoupling,
will be made precise in §4 when we introduce the
causal interpretation of the word–concept model.

Our counterfactual unigram distribution in
Eq. (17) allows us to decouple h∥ and h⊥ and,
thus, separate the information contained in H⊥
and H∥ without worrying about their dependence.
We define the counterfactual mutual information
between the concept and the projection on to the
non-concept subspace as

Iq(C;H⊥)
def
= (18)∑

c∈C

∑
h⊥∈H⊥

qu(c,h⊥) log
qu(c,h⊥)

qu(c)qu(h⊥)

This quantity measures information about the con-
cept in H⊥, and is computed by marginalizing out
h∥ from Eq. (17). Iq(C;H∥) can also be obtained
by marginalizing out h⊥ instead. Importantly, as
we show later in this section, Eq. (18) is minimized
by the correct subspace in our example.

The same logic also allows us to correctly
measure information contained in H⊥ and H∥
about the identity of the next word as

Iq(X;H⊥ | C)
def
= (19)∑

c∈C

∑
x∈Σ

∑
h⊥∈H⊥

qu(x,h⊥, c) log
qu(x,h⊥ | c)

qu(x | c)qu(h⊥ | c)

Computing Eqs. (18) and (19) in practice allows us
to come full circle. The independence assumption
means a conditional is computed as an average over
components obtained from other h representations
as follows

qu(x | h⊥) =
∑
h∈H∥

pu(x | h⊥,h∥)pu(h∥) (20)

Comparing this to Eq. (13) shows the practical
implication of the independence assumption—
pu(h∥ | h⊥) becomes pu(h∥).

Resolving the example from §3.2. As men-
tioned in §3.2, the suboptimality of the erasure
of our correct subspace under our correlational
I(C;H⊥) was caused by the fact that H∥ and
H⊥ had a common cause and, thus, were not
independent. Factorizing the distributions of
H∥ and H⊥ in qu, however, fixes this issue:

Assuming that P k defines the true subspace H∥,
(which, in §3.2, is the y-axis), the qu-based mutual
information Iq(C;H⊥) will be 0, no matter the
possible common causes between H∥ and H⊥.
Iq(C;H⊥), therefore, provides a much more
suitable characterization of the correct matrix P k

defining the concept subspace. Now, we leverage
Eqs. (18) and (19) to establish several definitions
that help us reason about the quality of our
partition into concept and non-concept subspaces.

3.4 Erasure and Encapsulation

We now make use of Eq. (18) to give a formal def-
inition of erasure and encapsulation. These two
notions, combined, determine the extent to which
a projection matrix P k has decomposed the rep-
resentation space into concept and non-concept
subspaces.

Definition 3.1 (Counterfactual Erasure). Let
H⊥

def
= P kH be an Rd-valued random variable.

An orthogonal projection matrix P k ∈ Rd×d of
rank k is an ε-eraser of C if Iq(C;H⊥) < ε.

As ε → 0, the subspace S⊥C characterized by
an ε-eraser P k for concept set C with respect
to H encodes very little information about the
concept. This means that P k effectively removes
the distinction between values in the concept set
C, i.e., the language model is no longer able to
determine the concept value required by the textual
context when generating the next word. We now
show that given an ε-eraser P k, projecting onto its
orthogonal complement with Id − P k preserves
nearly all of the information.

Definition 3.2 (Counterfactual Encapsulation).
Let H∥

def
= (Id − P k)H be an Rd-valued

random variable. An orthogonal projection
matrix Id − P k ∈ Rd×d of rank (d − k) is an
ε-encapsulator of C if Iq(C;H)− Iq(C;H∥) < ε.

We remark that the quantity Iq(C;H) −
Iq(C;H∥) is always non-negative due to the data-
processing inequality (Cover and Thomas, 2006,
§2.8). Encapsulation operationalizes the idea that
a subspace gives us all the information needed to
correctly identify the concept value required by tex-
tual context. Combining erasure and encapsulation,
we show that the mutual information decomposes
additively in the following sense.

Proposition 3.3. Suppose P k is a rank-k ε-eraser
and (Id−P k) is a rank-(d− k) ε-encapsulator of
C with respect to H. Then, as ε → 0, the following



decomposition holds

Iq(C;H) = Iq(C;H⊥) + Iq(C;H∥) (21)

Proof. See App. A. ■

3.5 Containment and Stability
Erasure and encapsulation give us a precise defini-
tion of what it means to partition the representation
space into a component that does not contain the
information about the concept (H⊥) and one that
does (H∥). They do not, however, consider the in-
formation content of the representation aside from
the concept. Observe that, with perfect erasure and
encapsulation, the learned orthogonal projection
matrix P k could erase much of the non-concept
related information from S⊥C . Specifically, if C is
encoded non-linearly (Ravfogel et al., 2022b), then
erasure via a linear orthogonal projection could
require the removal of additional dimensions that
would likely also contain non-concept information.
Therefore, in the concept erasure literature, tests
of successful erasure are generally paired with a
verification that the representations are not other-
wise damaged (Kumar et al., 2022a; Ravfogel et al.,
2020, 2022a,b; Elazar et al., 2021). We, too, need
an information-theoretic notion of preservation of
non-concept information in H⊥.

Preserving information about non-concept
aspects of x<t in H⊥ requires that H∥ only
capture information about the concept. In this
sense, H∥ should be the minimal subspace that
captures C. Containment formalizes this notion.
Containment requires that, conditioned on C,
H∥ contains little information about the next
word X . We just stated that the only information
(or stochastisity) in H∥ should come from the
concepts, so by conditioning on the concept, we
should remove all stochasticity from H∥.

Definition 3.4 (Counterfactual Containment). Let
P k be an eraser for concept set C with respect to H.
Let H∥

def
= (Id − P k)H be an Rd-valued random

variable. Then, we say that P k is ε-contained
with respect to H if Iq(X;H∥ | C) < ε.

Lastly, we define stability, a natural way to mea-
sure how much non-concept information about the
next word is preserved in the non-concept subspace
H⊥. Ideally, this should be as close as possible to
the information present in the entire representation
space, ignoring the information about the concept.

Definition 3.5 (Counterfactual Stability). Let P k

be an eraser for concept set C with respect to H. Let

H⊥
def
= P kH be an Rd-valued random variable.

Then, we say that P k is an ε-stabilizer with respect
to H if Iq(X;H | C = c)− Iq(X;H⊥ | C) < ε.

We remark that the data process-
ing inequality once again ensures that
Iq(X;H | C) − Iq(X;H⊥ | C) ≥ 0. Con-
tainment and stability together characterize the
preservation of information not related to concepts.
In analogy to the goal of erasure and encapsulation
in §3.4, containment can be viewed as the erasure
of next-word-related information from H∥, and
stability can be viewed as the encapsulation of
next-word-related information in H⊥.

A decomposition of the mutual information of
X with regard to H⊥ and H∥ can also be derived
in a similar sense to Proposition 3.3.

Proposition 3.6. Suppose P k is ε-contained and
ε-stabilized. Then, as ε → 0, the following decom-
position holds

Iq(X;H | C) (22)

= Iq(X;H⊥ | C) + Iq(X;H∥ | C)

Proof. See App. B. ■

We have now defined four properties which,
together, allow us to verify that we have properly
identified the concept subspace and partitioned
the representation space according to Eqs. (21)
and (22). Next, we argue that such a partitioning
enables us to control a language model’s generative
process.

4 A Causal Graphical Model

We now propose a causal structure by which lan-
guage models leverage concepts, in the form of a
latent variable, in the generation process. We relate
this causal structure to the information partition def-
initions given in §3. This enables causal controlled
generation via a do-intervention (Pearl, 2009) on
the concept random variable C. We finish with a
discussion of how our causal controlled generation
approach improves upon existing approaches.

4.1 Concept as a Latent Variable
While autoregressive language models are also re-
ferred to as causal informally,10 in this work, we

10The monicker causal is a recent development and ahistor-
ical. It was brought about primarily by the rise in popularity
of masked language models, e.g., Devlin et al. (2019), which
are not language models in the traditional sense in that they
do not define a distribution over strings.
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Figure 2: Causal graphical models that demonstrate how a concept may have on causal effect on word generation.
X<t, C,X represent the random variables for the string context, the underlying concept, and the next word,
respectively. H,H∥,H⊥ are the representation at step t, its concept-related component, and its component
whose concept-related information is erased by orthogonal projection matrix P k. Fig. 2a shows the traditional
autoregressive causal structure for generation. Fig. 2b is our proposed causal structure for generation with a C-valued
latent variable C. Fig. 2c is the causal structure induced by a do-intervention on C. Finally, Fig. 2d is the causal
structure implied by Yang and Klein’s (2021) concept-controlled generation approach.

delve into what the actual causal structure behind
an autoregressive language model may be. We illus-
trate the tradidional autoregressive causal structure,
based on the model definition put forth in §2.1, in
Fig. 2a. In it, the Σ∗-valued random variable X<t

represents the textual context that was previously
sampled from the model, H is the deterministic
contextual representation, and X the word which
is sampled from H based on Eq. (2).11

When we discussed the construction of a
word–concept model in Eq. (4), we were implicitly
assuming a causal structure. This structure is
identical to Fig. 2a, with the addition of the
concept variable depending on X<t and X . The
conditional distribution ι(c | x<t, x) indicates that
the concept c is determined after the word x is
sampled. According to such a causal structure, the
concept is a byproduct of the generation process, in
that it does not contribute to determining the word
x. For this reason, while this structure allows us
to study the relationship between textual context,
words and the associated concepts, it does not lend
itself well to controlling the generated sequence
based on a selected value of a concept.

To enable controlled generation with respect to

11Circles in Fig. 2 represent random variables and
diamonds represent deterministic variables.

the concept, we introduce a C-valued latent variable
C in the generation process, as shown in Fig. 2b.
We make two assumptions about C. First, we as-
sume that the distribution of C is determined by
the textual context X<t, and, moreover, that C is
not fully determined by the context x<t, i.e., C is
stochastic. As we saw in an example in §2, the
concept value of a word is not fully determined
by the preceding context. Second, we assume that
the concept is determined before the word is sam-
pled. In this way, the concept can directly influence
the sampled word x and is thus better suited for
controlled generation. In doing so, we break away
from ι, which deterministically assigned a concept
value to a word based on the preceding context.

Our two assumptions on C have an important
implication: X<t is no longer the only source of
stochasticity in H , as in Fig. 2a. Rather, we assume
that both X<t as well as C influence the represen-
tation H . This means h is now a function of both
x<t and c, i.e., h = h (x<t, c). This new contex-
tual representation is then used to determine the dis-
tribution over the next word x according to Eq. (2).
This is not, strictly speaking, an accurate model of
the construction of representations based on textual
context, because H is deterministic given X<t in
most neural language models, as previously dis-



cussed in this paper. Nevertheless, we make this
assumption because we consider this to be a minor
departure from reality that enables our model.

4.2 Causal Controlled Generation
We now derive a formal relationship between era-
sure, encapsulation, stability, containment, and the
assumed causal graph in Fig. 2b. First, inspecting
Fig. 2b, we see that if we wish to intervene on C to
influence X , there is a single backdoor path from
C to H . However, as shown in Fig. 2c, intervening
on C directly (denoted by do(C = c)) breaks this
path by removing the edge X<t → C, which lets
us easily compute the distribution over the next
word after intervening on C as follows

p(x | H⊥ = h⊥, do(C = c)) (23)

=
∑
g∈H

p(x | H = h⊥ + (Id − P k)g) p(g | c)

where, as shown in Fig. 2b, we assume that
h⊥ is deterministic given the context x<t. g
is an Rd-valued contextual representation that
encodes a textual context x′

<t with concept value
c. With high probability, h(x<t) and g(x′

<t) will
be different. This is the logical conclusion of
our decision to treat h⊥ and h∥ as statistically
independent—we can intervene on the generation
process by setting the value of the conceptual
component independently.

We now make good on our decision to name the
counterfactual unigram distribution from Eq. (17)
as such. Assuming the model Fig. 2b, a do-
intervention on C—as depicted in Fig. 2c—implies
erasure, encapsulation, stability, and containment.
We make this idea formal in the following theorem.

Theorem 4.1. Consider a joint distribution p that
factors as in Fig. 2b parameterized by orthogonal
projection matrix P k. Under the distribution

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) (24)

p(h⊥ | do (C = c)) p(h∥ | do (C = c)) p(c)

we have that P k is an ε-eraser, Id − P k is an
ε-encapsulator, Id − P k is an ε-container and
P k is an ε-stabilizer for every ε > 0.

Proof. A proof is given in App. C. ■

What Theorem 4.1 tells us is that the graph given
in Fig. 2b is consistent with the technical elabora-
tion in §3. Specifically, it means that erasure, en-

capsulation, stability, and containment are all prop-
erties that we expect a causal distribution resulting
from an intervention on a concept to have. The in-
terventional distributions, hence, motivate our dis-
cussion on independent p(h∥) and p(h⊥) in §3.3).

4.3 Constant Concept Subspace Hypothesis

Using the vocabulary and the graphical model es-
tablished so far, we can formalize another special
case as the following hypothesis: The case where
there is no arc X<t → H∥ in Fig. 2b.

Hypothesis 4.2. Let (Id − P k) be an ε-
encapsulator of C. The constant concept sub-
space hypothesis states that, for any x<t ∈ Σ∗

and c ∈ C, the projection of h (x<t, c) onto
the H∥ depends only on c as ε → 0. That is
(Id − P k)h(x<t, c) = g(c) ∈ Rd for all c ∈ C
for some g : C → Rd assigning concepts vector
representations.

In words, each concept value c ∈ C has a
constant encoding g(c) in the concept subspace
represented by random variable H∥. This means
that C uniquely determines H∥, i.e., H∥ is a
deterministic function of C. We suspect that the
constant concept subspace hypothesis will not hold
completely in practice.

4.4 Non-causal Controlled Generation
Controlled generation involving the manipulation
of concepts is not a new problem. We contextualize
our approach relative to Yang and Klein’s (2021)
method. They perform controlled generation as
follows. First, they train a classifier to predict a
concept value c ∈ C from the contextual represen-
tation h of a language model. Then, they perform
controlled generation by conditioning on a concept
value C = c and applying Bayes’ rule as follows:

p(x | x<t, C = c) (25)

∝ p(C = c | (Id − P k)h(x<t)) p(x | x<t)

We illustrate the causal structure implied by this
approach in Fig. 2d. Additionally, we include
P k to relate this approach to our subspace
formulation,12 but note that Yang and Klein (2021)
do not make use of concept subspaces. Importantly,
a do-intervention on this causal structure is not
possible, because there is no causal path from C
to X in Fig. 2d. A do-intervention would remove

12Thus, we assume that the classifier is restricted to looking
at H∥ to make its prediction.



the edge from H to C, thereby having no effect
on X , i.e., we have

p(x | h(x<t),do(C = c)) = p(x | h(x<t)) (26)

This is why the authors condition on C instead.
In this sense, Yang and Klein’s (2021) and similar
methods are not causal and cannot easily be
extended to be so. As discussed in §4.2, our
approach is causal, but such an analysis may come
at the price of a number of restricting assumptions
that are not fully met in practice. In the next
section, we explain how we go about testing these
assumptions with data.

5 Experimental Setup

Concepts and Models. We perform our analysis
on two concepts, verbal-number in English with
C = {sg, pl, n/a} and grammatical-gender in
French with C = {fem,msc, n/a}. For each of
these concepts, we study the representation spaces
of an autoregressive language model, namely GPT2
(Radford et al., 2019).13

Data. For verbal-number in English, we rely
on Linzen et al.’s (2016) number agreement dataset.
This dataset consists of sentences from Wikipedia
with a sg or pl verb, constructed such that each
sentence is provided with the fact (sg verb in the
case of a sg sentence, and vice-versa) and the foil
(inflected form of the fact to have opposite concept
value). For grammatical-gender in French, we
rely on three treebanks from Universal Dependen-
cies (Nivre et al., 2020): French GSD (Guillaume
et al., 2019), ParTUT (Sanguinetti and Bosco, 2015,
2014; Bosco and Sanguinetti, 2014), and Rhap-
sodie (Lacheret et al., 2014). We replicate the pre-
processing steps of Linzen et al. (2016) on each of
these datasets.

Vocabulary Partition. In §2.2, we defined
our concept mapping ι as a means of relating
language models and concepts. This distribution
is context-sensitive in order to handle words with
ambiguous concept values out of context, for
example, due to syncretism in English. In practice,
we drop the context-dependent aspect and consider
a single partition of Σ as our definition of a concept.
We start constructing the partition in a model-
agnostic manner: we use Spacy (Montani et al.,

13We rely on the implementations in the transformers library
(Wolf et al., 2020), namely: gpt2-large for verbal-number
and gpt2-base-french for grammatical-gender.

2022) to tag the French and English Wikipedia
corpora (Foundation, 2023), respectively. For
verbal-number, we use the tagged English words
to obtain lists of sg and pl verbs, which we then
align to obtain matching pairs, e.g., (walks, walk).
The process is the same for grammatical-gender
in French, leading to gendered pairs of adjectives,
e.g., (français, française). For each model, we
then partition the vocabulary according to the
appropriate list, with tokens not included in
either list classified as n/a. One limitation of our
work is that we don’t consider concept words
that are tokenized into more than one subword
in our analysis—for example, if disambiguates
tokenizes to [disambiguate, "#s"], then the pair
(disambiguates, disambiguate) is assigned to n/a.

The concept value n/a. In practice, we exclude
n/a from our concept set when computing our met-
rics. The reason for this is that in both text sampled
from the model and natural text, the vast majority
of words don’t invoke the concept, meaning the
concept marginals pu(c) and p̃u(c) assign very low
probabilities to our values of interest. Resulting
information metrics would therefore be dominated
by n/a, so we choose to exclude it.

Finding the Concept Subspace. We find P k for
different values of rank parameter k ∈ {0, . . . , d}
using the minimax game of R-LACE (Ravfogel
et al., 2022a). Until recently (Belrose et al., 2023),
R-LACE was the state-of-the-art approach for find-
ing the optimal rank k subspace S⊥C characterized
by P k, such that the concept is no longer linearly
recoverable from the representations. R-LACE op-
timizes a cross-entropy loss on samples from p̃u,
as follows

min
w

max
P k

∑
c∈C

∑
h∈H

p̃u(c | h) log pw(c | P kh)

up to an additive constant where we define

pw(c | P kh)
def
=

exp (w(c) · P kh)∑
c′∈C exp (w(c′) · P kh)

(27)

and w : C → Rd is a parameter matrix. By
optimizing against linear predictability, R-LACE
maximizes a lower bound on our correlational
I(C;H⊥) with respect to P k. We report coun-
terfactual information-theoretic results for the
projection matrices learned by R-LACE, and leave
the optimization of this metric for identification
of the causal subspace to future work. Results are
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Figure 3: Erasure, Encapsulation, Containment and Stability metrics across values of concept subspace dimension-
ality d− k. In separate columns, we report two sets of results for each model, estimated over samples generated
using ancestral sampling (pu) and nucleus sampling (p̃u). The first row shows concept-related information metrics,
namely Erasure and Encapsulation, along with previously undefined metrics. Total Info is I(C;H), i.e., the amount
of information about the concept in the original representations. Subspace Info is Iq(C;H∥). Reconstructed Info
is Iq(C;H∥) + Iq(C;H⊥), and serves to test whether total information decomposes additively over the partition.
The second row shows these metrics as a percentage of Total Info. The third row shows stability and containment
metrics, i.e., information about the next word X , conditioned on C.

reported over 3 random instantiations of R-LACE,
i.e., over 3 learned P k matrices for each k. Due
to the instability of the adversarial game objective,
extensive hyperparameter tuning was done for
low d − k values, especially d − k = 1. Higher
variance at higher d−k values, for some models, is
due to instability in training resulting, we suspect,
from lack of hyperparameter tuning.

6 Results

We now discuss our empirical findings.

6.1 Partitioning of Concept Information

The first key finding in Fig. 3 is that, across the
board, R-LACE finds a 1-dimensional concept sub-
space that performs well according to our counter-
factual metrics. In terms of erasure, encapsulation
and reconstructed information, we see that the par-
titioning of concept information is both substantive
and lossless. Roughly 50% of total concept infor-
mation is erased from the non-concept subspace,
and this information is preserved in the concept
subspace (encapsulation), such that the sum over
our partition is approximately equal to total infor-
mation contained in the original representations.
Low values of stability and containment metrics

for d− k = 1 show that this partitioning is made
while preserving non-concept information in S⊥C .
This result is notable because R-LACE was not
trained to minimize counterfactual erasure. As ex-
plained in §5, R-LACE optimizes an objective that
is susceptible to spurious correlations. Our results
show that, while counterfactual MI is not reduced
to 0, the model does rely on this subspace heavily
for generation.

Next, we note that as d − k increases, our
metrics change as we would expect. Erasure is
driven to 0 as the representations are gradually
destroyed, while concept information in the
concept subspace increases with d − k. We
note that for gpt2-large, information loss when
partitioning concept information into concept and
non-concept subspaces is near 0. This is not the
case for gpt2-base-french—for this model, as
d − k increases, concept information is erased
from H⊥ but that information is not recovered
in H∥, resulting in a lossy partition. In terms of
the preservation of non-concept information over
d− k, stability increases roughly linearly in d− k,
while containment stays relatively constant as d−k
increases initially. This means that information
about the next word is erased from the non-concept
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Figure 4: Controlled Generation Experiment. We con-
duct this experiment using only a 1-dimensional con-
cept subspace because of the results given in §6.1. We
compute accuracy in the forced-choice setup shown in
sentences (1-a) and (1-b), i.e., assigning higher proba-
bility to the fact over foil. Reported values are computed
on samples from the test split of our curated datasets of
natural text used to train R-LACE, averaging over g(c)
values from the validation set. Orig. Accuracy refers to
the accuracy of the model using original representations.
Orig. Top Concept is the accuracy with which the model
assigns highest rank among concept words to the fact.
Erased Accuracy is the accuracy after erasure, which
we report separately for each binary concept value, i.e.,
C = sg refers to accuracy in choosing the sg fact over
the pl foil in a sg context. Lastly, Do C=sg Accuracy
and Do C=sg Top Concept, for example, report the accu-
racy with which the sg verb is chosen over the pl variant
after intervention, and the frequency with which that
verb is assigned top rank.

subspace by removing more dimensions, but that
information is destroyed in the process of breaking
it off into the concept subspace.

6.2 Causal Controlled Generation
In Fig. 4, we show accuracy results for the con-
trolled generation experiment. In order to properly
evaluate the control experiment, we first contex-
tualize our results with accuracy measures before
and after concept erasure. We see, in the case of
gpt2-large, R-LACE learns a P k that erases pl.
Similarly, fem is erased from gpt2-base-french.
We note that erasure with d − k = 1 is more suc-
cessful, in terms of accuracy, for gpt2-large than
gpt2-base-french. We attribute this to differ-
ences in the quality and the amount of training
data. Both correspond to minority classes in the
training corpora.

With this context in mind, we find a mixed result
for the control experiment. For gpt2-large, the

do-intervention to C = pl completely recovers the
accuracy for this class. Erased Accuracy C = pl
shows a baseline of accuracy after erasure that is
near 0, i.e., the model always assigns higher proba-
bility to the sg form. The intervention drives this
accuracy back up to above 0.9, the value prior to
erasure. Note that we chose not to show a concept
value breakdown for Orig. Accuracy because mod-
els were equally good at predicting both classes,
across both concepts. Furthermore, the fact that
top rank accuracy from original representations is
preserved after erasure and intervention operations
suggests that each of these operations has essen-
tially no impact on non-concept information for
d− k = 1. Results for gpt2-base-french are not
as good—C = msc actually reduces the accuracy
relative to after erasure, while, with C = fem, we
see no significant difference. Results in §6.1 do not
explain this difference—the information partition
for gpt2-base-french was more lossy, but not to
an extent that foreshadowed such a difference.

7 Related Work

In terms of our stated goal of developing a geo-
metrically oriented causal probing framework, our
work is most closely related to Elazar et al. (2021)
and Lasri et al. (2022). Elazar et al. (2021) pose the
problem of identifying a subspace used by a model
to perform a task via an erasure intervention, on the
assumption that failure to perform the task after in-
tervention certifies the usage of the subspace. Am-
nesic probing (Elazar et al., 2021) measures usage
by a language model using word prediction accu-
racy after erasure, without specifying which set of
words is considered at each step (e.g., entire vocab-
ulary, specific pairs). Lasri et al. (2022) extend this
work with a carefully designed dataset, referred to
as a behavioral task, in which each context has a
fact–foil pair, such that usage can be measured via
change in the relative probabilities of the fact and
foil, and the model’s ability to assign higher proba-
bility to the fact. In short, Lasri et al. (2022) applied
Linzen et al.’s (2016) forced choice approach to
the problem of evaluating the impact of concept
erasure. In terms of evaluating the ability of linear
concept erasure methods to remove a concept sub-
space that is useful to the model, our work builds
on both: we rely on behavioral datasets to learn our
projection matrices, but we look beyond the choice
between a pair of words by formalizing the expecta-
tion that erasure should result in an inability to dis-



tinguish between concept-related pairs generally.
With regards to the preservation of non-concept

related features after the intervention, existing
work on concept erasure has done this in two
different ways. The most common approach
(Ravfogel et al., 2020, 2022a,b) is to run SimLex-
999 (Hill et al., 2015), a word similarity test that
checks that the model’s understanding of words
hasn’t changed significantly after the intervention.
Ravfogel et al. (2022b) also check that the ability
of a main-task classifier on an orthogonal task
is not seriously harmed after erasure (though
we note that a new classifier is trained on the
representations after intervention). Altogether,
these tests have little to do with the model’s output
distribution over the next word, which is our
primary concern. Elazar et al. (2021) fine-tune a
language model after erasure with gold annotations
for the concept, assuming that if performance on
the task recovers fully, then no other information
was removed by the intervention. In turn, they
posit that an incomplete recovery suggests other
information was removed. Fine-tuning results in
the paper show an increase in task performance,
which suggests that further training can improve
the model overall, casting doubt on the validity of
performance recovery as an evaluation criterion.
Finally, Elazar et al. (2021) also report the overall
KL divergence in the LLM’s output distribution,
over the entire vocabulary. This last approach was
a source of inspiration for our work, which delves
much deeper into this distributional distance idea
via our stability and containment tests.

Lastly, with regards to the application of infor-
mation theory to probing, and specifically the idea
of mutual information between concept-valued
random variables and model representations, we
drew inspiration from Pimentel et al. (2020) and
Voita and Titov (2020).

8 Conclusion

In this paper, we set out to define an intrinsic mea-
sure of information in a subspace of a language
model’s representation space. In light of the cor-
relational failure mode of linear concept erasure
methods (Kumar et al., 2022a), doing so requires
a counterfactual approach. By treating the compo-
nents of a representation in the concept subspace
and its orthogonal complement independently, we
are able to correctly measure information in a sub-
space by marginalizing out the remainder of the

space. To the extent that a causal concept subspace
exists for a particular concept and model, erasure
under this metric is optimized by that subspace.
In practice, we did not actually optimize this met-
ric. This is a complex task that we leave to future
work—computing it involves a double nested sum
over countably infinite vector spaces. Our theoreti-
cal analysis, combined with the efficacy of linear
erasure methods using a correlational objective,
suggests a tantalizing prospect: That a counter-
factual objective could identify a one-dimensional
causal subspace containing all information about
the concept empirically.
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A Proof of Proposition 3.3

Proposition 3.3. Suppose P k is a rank-k ε-eraser and (Id − P k) is a rank-(d− k) ε-encapsulator of C
with respect to H. Then, as ε → 0, the following decomposition holds

Iq(C;H) = Iq(C;H⊥) + Iq(C;H∥) (21)

Proof. On the left-hand side,

Iq(C;H) + ε ≥ Iq(C;H∥) + ε (data-processing inequality) (28a)

≥ Iq(C;H∥) + Iq(C;H⊥) (P k is an ε-eraser) (28b)

On the right-hand side,

Iq(C;H) + ε ≤ Iq(C;H∥) + 2ε ((Id − P k) is an ε-encapsulator) (29a)

≤ Iq(C;H∥) + Iq(C;H⊥) + 2ε (non-negativity of MI) (29b)

Combining Eq. (28b) and Eq. (29b), we have

Iq(C;H∥) + Iq(C;H⊥) ≤ Iq(C;H) + ε (30a)

≤ Iq(C;H∥) + Iq(C;H⊥) + 2ε (30b)

Taking ε → 0 in Eq. (30), we have Eq. (21)

Iq(C;H) = Iq(C;H∥) + Iq(C;H⊥)

■

B Proof of Proposition 3.6

Proposition 3.6. Suppose P k is ε-contained and ε-stabilized. Then, as ε → 0, the following decomposi-
tion holds

Iq(X;H | C) (22)

= Iq(X;H⊥ | C) + Iq(X;H∥ | C)

Proof. On the left-hand side,

Iq(X;H | C) + ε ≥Iq(X;H∥ | C) + ε (data-processing inequality) (32a)

≥Iq(X;H∥ | C) + Iq(X;H⊥ | C) (P k is ε-contained) (32b)

On the right-hand side,

Iq(X;H | C) + ε ≤ Iq(X;H∥ | C) + 2ε (P k is an ε-encapsulator) (33a)

≤ Iq(X;H∥ | C) + Iq(X;H⊥ | C) + 2ε (non-negativity of MI) (33b)

Combining Eq. (32b) and Eq. (33b), we have

Iq(X;H∥ | C) + Iq(X;H⊥ | C) ≤ Iq(X;H | C) + ε (34a)

≤ Iq(X;H∥ | C) + Iq(X;H⊥ | C) + 2ε (34b)

Taking ε → 0 in Eq. (34), we have Eq. (22)

Iq(X;H | C) = Iq(X;H∥ | C) + Iq(X;H⊥ | C)

■



C Proof of Theorem 4.1

Theorem 4.1. Consider a joint distribution p that factors as in Fig. 2b parameterized by orthogonal
projection matrix P k. Under the distribution

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) (24)

p(h⊥ | do (C = c)) p(h∥ | do (C = c)) p(c)

we have that P k is an ε-eraser, Id − P k is an ε-encapsulator, Id − P k is an ε-container and P k is
an ε-stabilizer for every ε > 0.

Proof. Given the factorization in Fig. 2b, we derive the following equation using the independence
assumptions given in Fig. 2b:

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) p(h⊥ | do (C = c)) pdo(h∥ | do (C = c)) p(c) (36a)

= p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c) p(c) (36b)

Erasure. Given Eq. (36b), we have the following joint distribution

pdo(c,h⊥) =
∑

h∥∈H∥

∑
x∈Σ

pdo(x,h⊥,h∥, c) (37a)

=
∑

h∥∈H∥

∑
x∈Σ

p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c) p(c) (37b)

=
∑

h∥∈H∥

(∑
x∈Σ

p(x | h⊥,h∥)

)
︸ ︷︷ ︸

=1

p(h⊥) pdo(h∥ | c) p(c) (37c)

=

 ∑
h∥∈H∥

pdo(h∥ | c)


︸ ︷︷ ︸

=1

p(h⊥) p(c) (37d)

= p(h⊥) p(c) (37e)

The mutual information I(C;H⊥) can be computed as follows

I(C;H⊥) =
∑
c∈C

∑
h⊥∈H⊥

pdo(c,h⊥) log
pdo(c,h⊥)

p(c)p(h⊥)
(38a)

=
∑
c∈C

∑
h⊥∈H⊥

pdo(c,h⊥) log
p(h⊥) p(c)

p(c)p(h⊥)
(applying Eq. (37e)) (38b)

= 0 < ε (38c)

for every ε > 0.

Encapsulation. The following equation holds given Eq. (36b)

I(C;H)− I(C;H∥) = I(C;H∥,H⊥)− I(C;H∥) (H = H⊥,H∥) (39a)

= I(C;H⊥ | H∥) (39b)

= I(C;H⊥) (H⊥,H∥ are independent (§3.3)) (39c)

= 0 < ε (applying Eq. (38c)) (39d)

(39e)



Containment. The following joint distribution can be derived from Eq. (36b)

pdo(x,h∥, c = c) =
∑

h⊥∈H⊥

pdo(x,h⊥,h∥, c = c) (40a)

=
∑

h⊥∈H⊥

p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c = c) p(c = c) (40b)

=
∑

h⊥∈H⊥

p(x,h⊥,h∥)

p(h⊥,h∥)
p(h⊥) pdo(h∥ | c = c) p(c = c) (40c)

=
∑

h⊥∈H⊥

p(x,h⊥,h∥)

����p(h⊥) p(h∥)
����p(h⊥) pdo(h∥ | c = c) p(c = c) (H⊥,H∥ are independent (§3.3)) (40d)

=
∑

h⊥∈H⊥

p(x,h⊥ | h∥)︸ ︷︷ ︸
=p(x|h∥)

pdo(h∥ | c = c) p(c = c) (40e)

= p(x | h∥) pdo(h∥ | c = c) p(c = c) (40f)

= p(x | h∥, c = c) p(h∥ | c = c) (H∥ is deterministic given C ) (40g)

The mutual information I(X;H∥ | C = c) can be computed as follows

I(X;H∥ | C = c) (41a)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
pdo(x,h∥, c = c)

p(x | c = c)p(h∥|c = c)
(41b)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
p(x | h∥, c = c) p(h∥ | c = c)

p(x | c = c) p(h∥ | c = c)
(applying Eq. (40g))

(41c)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
p(x | h∥, c = c) p(h∥ | c = c)

p(x | h∥, c = c) p(h∥ | c = c)
(H∥ is deterministic given C)

(41d)

= 0 < ε (41e)

Stability. The following equation holds given Eq. (36b)

I(X;H | C = c)− I(X;H⊥ | C = c) (42a)

=I(X;H⊥,H∥ | C = c)− I(X;H⊥ | C = c) (H = (H⊥,H∥)) (42b)

=I(X;H∥ | H⊥, C = c) (conditional mutual information) (42c)

=I(X;H∥ | C = c) (H⊥,H∥ are independent (§3.3)) (42d)

=0 < ε (applying Eq. (41e)) (42e)

■


