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Abstract

Understanding neural network architectures with formal models of computation promises to spark a
better understanding of the network’s capabilities and limitations. A long line of work has described
recurrent neural networks (RNN) in terms of their connection to the well-understood finite-state
automata (FSAs), whose sequential nature provides a useful analogy to how RNNs function. Minsky’s
[1954] construction first showed how RNNs can simulate FSAs and provided a way of understanding
RNNs as FSAs. This paper presents a comprehensive review of this construction along with two
additional classical results showcasing the relationship between RNNs and FSAs: The constructions
due to Dewdney [1977] and Indyk [1995]. We are not only interested in whether an RNN can simulate
an FSA, but also in the space requirements to do so: Whereas Minsky [1954] shows that an RNN can
simulate an FSA with N states using O pNq neurons, Dewdney [1977] improved this to O

´

N
3
4

¯

and

Indyk [1995] further to O
´?

N
¯

, which he also showed to be optimal. We discuss the constructions,
emphasizing their commonalities, and put them into the context of more modern research, focusing on
the representational capacity of neural language models.

https://github.com/rycolab/weighted-minsky

1 Introduction
The recent success of neural language models has sparked considerable interest in understanding the
theoretical capabilities of neural architectures such as [Elman, 1990, Hochreiter and Schmidhuber, 1997,
Cho et al., 2014] and transformers [Vaswani et al., 2017]. Classical results state that RNNs with bounded-
precision and computation time are equivalent to finite-state automata [McCulloch and Pitts, 1943, Minsky,
1954, Kleene, 1956, Dewdney, 1977, Alon et al., 1991, Indyk, 1995] whereas infinite-precision RNNs
with unbounded computation time can simulate Turing machines [Siegelmann and Sontag, 1992]. More
recent work has investigated the computational power of RNNs and transformers in more realistic settings
[e.g., Hao et al., 2018, Weiss et al., 2018, Korsky and Berwick, 2019, Merrill, 2019, Merrill et al., 2020,
Hewitt et al., 2020, Hahn, 2020, Chiang and Cholak, 2022, Merrill et al., 2022, Merrill and Tsilivis, 2022,
Chiang et al., 2023, inter alia] and as language models [Svete and Cotterell, 2023, Nowak et al., 2023].
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Many of the constructions rely on common principles such as (1) what it means for a neural network
to simulate an automaton; (2) how the mechanisms and the parameters of the neural network can be
used to simulate an automaton; and (3) how the components of a computational model can be encoded
in a way suitable for a neural representation. To facilitate a better understanding of such fundamental
principles and to encourage further research in this area, we review three classical constructions of simple
(Elman) recurrent neural networks simulating finite-state automata: The constructions by Minsky [1954],
Dewdney [1977], and Indyk [1995].

Understanding the representational capacity of neural architectures can help us understand the capa-
bilities and limitations of models using them, as described by the following representative examples.

(i) Merrill [2019], Weiss et al. [2018] show that simple RNNs with a bounded activation function
cannot implement a counting mechanism, implying that they cannot recognize languages requiring
any notion of counting, for example, the Dyck language of balanced parentheses.

(ii) Hahn [2020] showed that the transformer architecture cannot reliably represent the PARITY language.
This implies that a language model implemented using a transformer would not be able to correctly
compute a sequence of repeated negations (since the true value of the statement depends on whether
the number of negations is odd or even). For the same reason, the model would also not be able to
compute the result of the multiplication of a sequence of ´1’s.

Characterizing neural models can thus help elucidate some potential real-world shortcomings of the
models and thus provide concrete limitations to their generalization ability.

In this work, we focus on the relationship between RNNs with the Heaviside activation function
H pxq

def
“ 1 tx ą 0u and finite-state automata, one of the simplest computational models defining formal

languages. While the restriction to the Heaviside activation function might seem limiting, it provides a
useful framework for exploring the representational capacity of real-world systems. More importantly for
this paper, the Heaviside activation function has a long history in the literature studying the representational
capacity of neural networks. Among other things, the Heaviside activation function is used by the standard
model considered by the three constructions of interest. Minsky’s construction [Minsky, 1954] describes
a way to represent an FSA with N states using a Heaviside RNN whose hidden state is of size linear
in the number A’s states. Dewdney [1977] then improved this construction by showing that an FSA
with N states can be represented by a Heaviside RNN of size O

´

|Σ|N
3
4

¯

. The optimal lower bound in
the number of states was then more thoroughly studied by Alon et al. [1991]. Using the same ideas as
Dewdney [1977] but a specific trick to compress the size of the processing layer of the RNN further Indyk
[1995] reduced Dewdney’s [1977] bound to O

`
?
N
˘

, which turns out to be asymptotically optimal. We
review and provide the proofs of some aspects of the constructions in this paper.

2 Preliminaries
An alphabet Σ is a finite, non-empty set. A formal language is a subset of Σ’s Kleene closure
Σ˚ def

“ tεu Y Σ Y Σ2 Y ¨ ¨ ¨ , where ε denotes the empty string. Finite-state automata are a tidy and
well-understood formalism for describing languages.

Definition 2.1. A finite-state automaton (FSA) is a 5-tuple pΣ, Q, I, F, δq where Σ is an alphabet, Q a
finite set of states, I, F Ď Q the set of initial and final states, and δ Ď Q ˆ Σ ˆ Q set of transitions.

We assume that states are identified by integers in Z|Q|
def
“ t0, . . . , |Q| ´ 1u.1 We also adopt a more

1For a cleaner presentation, we also assume that vectors and matrices are zero-indexed.
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suggestive notation for transitions by denoting pq, y, q1q P δ as q y
ÝÑ q1 and call transitions of the form

q
y

ÝÑ q1 y-transitions. Furthermore, we define Par pq, yq
def
“

!

q1 | Dy P Σ: q1 y
ÝÑ q P δ

)

as the set of

y-parents of q and the children of the state q as the set
!

q1 | Dy P Σ: q
y

ÝÑ q1 P δ
)

.

Definition 2.2. An FSA A “ pΣ, Q, I, F, δq is deterministic if |I| “ 1 and for every pq, yq P Q ˆ Σ,
there is at most one q1 P Q such that q y

ÝÑ q1 P δ.

Definition 2.3. A path π is a sequence of consecutive transitions q0
y0

ÝÑ q1, ¨ ¨ ¨ , qN´1
yN´1

ÝÝÝÑ qN . Its
length |π| is the number of transition in it and its scan s pπq the concatenation of the symbols on them.
The path π is accepting if q0 P I and qN P F .

We denote with ΠpAq the set of all paths in A and with ΠpA,yq the set of all paths that scan y P Σ˚.

Definition 2.4. An FSA A “ pΣ, Q, I, F, δq accepts the string y P Σ˚ if there exists an accepting path
scanning y. The language accepted by A, L pAq, is the set of strings accepted by A.

Definition 2.5. Let Σ be an alphabet. A language L Ď Σ˚ is regular if it is accepted by some FSA A.

Since we will be interested in the lower space bounds required to recognize regular languages, an
important notion is that of a minimal FSA.

Definition 2.6. The FSA A is minimal for the regular language L if there is no FSA with fewer states
accepting the same language.

2.1 Recurrent Neural Networks
Over the course of this paper, we will focus on Elman RNNs [Elman, 1990] as they are the easiest
to analyze and special cases of more common networks, e.g., those based on long short-term memory
[LSTM; Hochreiter and Schmidhuber, 1997] and gated recurrent units [GRUs; Cho et al., 2014].

Definition 2.7. An Elman RNN R “ pΣ, σ,D,U,V,b,h0q is an RNN with the following hidden state
recurrence:

ht
def
“ σ pUht´1 ` Vrpytq ` bq , (1)

where h0 is set to some vector in RD. r : Σ Ñ RR is the symbol representation function and σ is an
element-wise nonlinearity. b P RD, U P RDˆD, and V P RDˆR. We refer to the dimensionality of the
hidden state, D, as the size of the RNN.

On determinism. Unlike FSAs, Elman RNNs (and most other popular RNN architectures, such as the
LSTM and GRU) implement inherently deterministic transitions between internal states. This means that
they can only simulate deterministic FSAs and any non-deterministic FSA that we would like to simulate
with an RNN first has to be determinized.

Common choices for the nonlinear function σ in Eq. (1) are the sigmoid function σpxq “ 1
1`expp´xq

and the ReLU σpxq “ maxp0, xq. However, the resulting nonlinear interactions of the parameters and
the inputs make the analysis of RNN LMs challenging. One fruitful manner to make the analysis tractable
is making a simplifying assumption about σ. We focus on a particularly useful simplification, namely
the use of the Heaviside activation function.2

2While less common now due to its non-differentiability, the Heaviside function was the original activation function used in
early work on artificial neural network due to its close analogy to the firing of brain neurons [McCulloch and Pitts, 1943, Minsky,
1954, Kleene, 1956].
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Figure 1: The sigmoid and Heaviside functions.

Definition 2.8. The Heaviside function is defined as Hpxq
def
“ 1 tx ą 0u.

See Fig. 1 for the graph of the Heaviside function and its continuous approximation, the sigmoid. For
cleaner notation, we define the set B def

“ t0, 1u. Using the Heaviside function, we can define the Heaviside
Elman RNN, the main object of study in the rest of the paper.

Definition 2.9. A Heaviside Elman RNN (HRNN) is an Elman RNN R “ pΣ, σ,D,U,V,b,h0q where
σ “ H .

2.1.1 Performing the Logical AND with an HRNN

As we will see, simulating an FSA with an RNN requires the RNN to perform the logical AND operation
between specific entries of binary vectors x P BD. The following fact shows how this can easily be
performed by an HRNN with appropriately set parameters.

Fact 2.1. Consider m indices i1, . . . , im P ZD and vectors x,v P BD such that vi “ 1 ti P ti1, . . . , imuu,
i.e., with entries 1 at indices i1, . . . , im. Then, H

`

vJx ´ pm ´ 1q
˘

“ 1 if and only if xik “ 1 for all
k “ 1, . . . ,m. In other words,

H
`

vJx ´ pm ´ 1q
˘

“ xi1 ^ ¨ ¨ ¨ ^ xim . (2)

As a special case, m “ 2 in Fact 2.1 corresponds to the AND operation of two elements, which is
used in Minsky’s construction. There, the vector v corresponds to the weights of a single neuron while
´ pm ´ 1q (´1 for m “ 2 corresponds to its bias.

3 Minsky’s Construction
This section describes the first of the three constructions of an HRNN simulating an FSA. The construction
is due to Minsky [1954] and represents an FSA A “ pΣ, Q, I, F, δq with an HRNN of size exactly |Σ||Q|.
Minsky’s construction is formally described by the following theorem.

Theorem 3.1. Let A “ pΣ, Q, I, F, δq be an FSA. Then, there exists an HRNN RNN of size |Σ||Q|

correctly simulating A.

We describe the full construction of an HRNN simulating a given FSA in the next subsection. The full
construction is described to showcase the mechanism with which the HRNN can simulate the transitions
of a given FSA and give intuition on why this might, in general, require a large number of parameters in
the HRNN. Many principles and constraints of the simulation are also reused later in the presentation of
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Figure 2: A high-level illustration of how the transition function of the FSA is simulated in Minsky’s
construction on a fragment of an FSA starting at q (encoded in h) and reading the symbol a. The top path
disjoins the representations of the children of q, whereas the bottom path disjoins the representations of
states reachable by an a-transition. The Heaviside activation conjoins these two representations into h1

(rightmost fragment).

the more efficient constructions of the HRNN simulating the FSA and the lower bounds on the size of the
HRNN.

For an FSA A “ pΣ, Q, I, F, δq, we construct an HRNN R with R “ pΣ, σ,D,U,V,b,h0q defining
the same distribution over Σ˚. The idea is to simulate the transition function δ with the Elman recurrence
by appropriately setting U, V, and b.

Let n : Q ˆ Σ Ñ Z|Q||Σ| be a permutations of Q ˆ Σ, m : Σ Ñ Z|Σ| a permutation of Σ, and
m : Σ Ñ Z

|Σ|
a permutation of Σ. We use n, m, and m to define the one-hot encodings J¨K of state–symbol

pairs and of the symbols, i.e., we assume that Jq, yKd “ 1 td “ n pq, yqu and JyKd “ 1 td “ m pyqu for
q P Q and y P Σ.

HRNN’s hidden states. The hidden state ht of R will represent the one-hot encoding of the current
state qt of A at time t together with the symbol yt upon reading which A entered qt. Formally,

ht “ Jpqt, ytqK P B|Q||Σ|. (3)

There is a small caveat: How do we set the incoming symbol of A’s initial state qι? As we show later, the
symbol yt in ht “ Jpqt, ytqK does not affect the subsequent transitions—it is only needed to determine
the target of the current transition. Therefore, we can set h0 “ Jpqι, yqK for any y P Σ.

Encoding the transition function. The idea of defining U, V, and b is for the Elman recurrence to
perform, upon reading yt`1, element-wise conjunction between the representations of the children of
qt and the representation of the states A can transition into after reading in yt`1 from any state.3 The

3See Fact 2.1 in §2.1.1 for a discussion of how an HRNN can implement the logical AND operation.
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former is encoded in the recurrence matrix U, which has access to the current hidden state encoding
qt while the latter is encoded in the input matrix V, which has access to the one-hot representation of
yt`1. Conjoining the entries in those two representations will, due to the determinism of A, result in a
single non-zero entry: One representing the state which can be reached from qt (1st component) using
the symbol yt`1 (2nd component); see Fig. 2.

More formally, the recurrence matrix U lives in B|Σ||Q|ˆ|Σ||Q|. Each column U : ,npq,yq represents
the children of the state q in the sense that the column contains 1’s at the indices corresponding to the
state–symbol pairs pq1, y1q such that A transitions from q to q1 after reading in the symbol y1. That is, for
q, q1 P Q and y, y1 P Σ, we define

Unpq1,y1q,npq,yq
def
“ 1

"

qt
y1

ÝÑ q1 P δ

*

. (4)

Since y is free, each column is repeated |Σ|-times: Once for every y P Σ—this is why, after entering the
next state, the symbol used to enter it is not relevant for the determination of the subsequent transitions
and, in the case of the initial state, any incoming symbol can be chosen to set h0.

The input matrix V lives in B|Σ||Q|ˆ|Σ| and encodes the information about which states can be
reached by which symbols (from any state). The non-zero entries in the column corresponding to y1 P Σ
correspond to the state–symbol pairs pq1, y1q such that q1 is reachable with y1 from some state:

Vnpq1,y1q,mpy1q
def
“ 1

"

˝
y1

ÝÑ q1 P δ

*

. (5)

Lastly, we define the bias as b
def
“ ´1 P R|Q||Σ|, which allows the Heaviside function to perform the

needed conjunction. The correctness of this process is formally proved with the following two lemmas.

Lemma 3.1. Let A “ pΣ, Q, I, F, δq be a deterministic FSA, y “ y1 . . . yT P Σ˚, and qt the state
arrived at by A upon reading the prefix yďt. Let R be the HRNN specified by the Minsky construction for
A, n the ordering defining the one-hot representations of state-symbol pairs by R, and ht R’s hidden
state after reading yďt. Then, it holds that h0 “ Jpqι, yqK where qι is the initial state of A and y P Σ and
hT “ JpqT , yT qK.

Proof. Define sph “ Jpq, yqKq
def
“ q. We can then restate the lemma as sphT q “ qT for all y P Σ˚,

|y| “ T . Let π be the y-labeled path in A. We prove the lemma by induction on the string length T .

Base case: T “ 0. Holds by the construction of h0.

Inductive step: T ą 0. Let y P Σ˚ with |y| “ T and assume that sphT´1q “ qT´1.
We prove that the specifications of U, V, and b ensure that sphT q “ qT . By definition of the

recurrence matrix U (cf. Eq. (4)), the vector UhT´1 will contain a 1 at the entries n pq1, y1q for q1 P Q

and y1 P Σ such that qT
y1

ÝÑ q1 P δ. This can equivalently be written as UhT´1 “
Ž

qT
y1

ÝÑq1Pδ
Jpq1, y1qK,

where the disjunction is applied element-wise.
On the other hand, by definition of the input matrix V (cf. Eq. (5)), the vector VJyT K will contain

a 1 at the entries n pq1, yT q for q1 P Q such that ˝
yT

ÝÝÑ q1 P δ. This can also be written as VJyT K “
Ž

˝
yT

ÝÝÑq1Pδ
Jpq1, yT qK.
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By Fact 2.1, H pUhT´1 ` VJyT K ` bqnpq1,y1q
“ H pUhT´1 ` VJyT K ´ 1qnpq1,y1q

“ 1 holds if
and only if pUhT´1qnpq1,y1q

“ 1 and pVJyT Kqnpq1,y1q
“ 1. This happens if

qT
y1

ÝÑ q1 P δ and ˝
yT

ÝÝÑ q1 P δ ðñ qT
yT

ÝÝÑ q1, (6)

i.e., if and only if A transitions from qT to qT upon reading yT (it transitions only to qT due to determin-
ism).

Since the string y was arbitrary, this finishes the proof. ■

4 Dewdney’s Construction
This section describes the construction due to Dewdney [1977] in our notation. Since some of the parts
are very similar to the construction due to Indyk [1995], those parts are reused in §5 and introduced more
generally.

Representing states of the FSA. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. Recall that Minsky’s
construction encodes the A’s current state as a one-hot encoding of the state-symbol pair. The construction
due to Dewdney [1977], on the other hand, represents the states separately from the symbols. It encodes
the states with two-hot representations by using the coefficients of what we call a square-root state
representation. This results in representations of states of size O

´

a

|Q|

¯

. The input symbols are

incorporated into the hidden state separately.4

Definition 4.1. Let A “ pΣ, Q, I, F, δq be an FSA and s
def
“ r

a

|Q|s. We define the square-root state
representation of A’s states q P Q as5

ϕ2 pqq
def
“

´Yq

s

]

, q mod s
¯

. (7)

We denote the inverse of ϕ2 with ϕ´1
2 and further define for k P Zs

ϕ´1
2 pk, ¨q

def
“ tq P Q | φ0 “ k where φ “ ϕ2 pqqu (8)

and ϕ´1
2 p¨, kq analogously.

Specifically, we will denote ϕ´1
2 pk, ¨q and ϕ´1

2 p¨, kq with k in the jth position (with j P Z2, 0 for
ϕ´1
2 pk, ¨q and 1 for ϕ´1

2 p¨, kq) as Φk,j .
We can think of the function ϕ2 as representing states of the FSA in a two-dimensional space Zs ˆZs.

However, to efficiently simulate A with an HRNN, it is helpful to think of ϕ2 pqq in two different ways:
as a vector v P Ně0

2|Q|, or as a matrix in B|Q|ˆ|Q| in the following sense.

Definition 4.2. Given a square-root state representation function ϕ2, we define the vector representation
of the state q P Q as the vector v pqq P B2|Q| with

v pqqφ0
“ 1 (9)

v pqqs`φ1
“ 1, (10)

4This again adds a factor |Σ| to the size of the hidden state, as we discuss later.
5Notice that ϕ2 pqq represents the coefficients of the expression of q P N in base s.
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where φ “ pφ0, φ1q “ ϕ2 pqq, and all other entries 0. Furthermore, we define the matrix representation
of the state q P Q as the matrix B P B|Q|ˆ|Q| with

B pqqφ0φ1
“ 1 (11)

and all other entries 0.

Dewdney’s construction also heavily relies on the representations of sets of states. We define those
additively.

Definition 4.3. Let Q Ď Q be a set of states. We define the vector representation of Q as the vector

v pQq
def
“

ł

qPQ

v pqq. (12)

Similarly, we define the matrix representation of Q as the matrix

B pQq
def
“

ł

qPQ

B pqq. (13)

To help understand the above definitions, we give an example of a FSA and the representations of its
states.

Example 4.1. Consider the FSA in Fig. 3, for which s “ r
a

|Q|s “ r
?
3s “ 2, meaning that

ϕ2 p0q “ p0, 0q ϕ2 p1q “ p0, 1q ϕ2 p2q “ p1, 0q , (14)

resulting in the state-to-vector mapping6

v p0q “
`

1 0 | 1 0
˘

(15)

v p1q “
`

1 0 | 0 1
˘

(16)

v p2q “
`

0 1 | 1 0
˘

, (17)

and the state-to-matrix mapping

B p0q “

ˆ

1 0
0 0

˙

B p1q “

ˆ

0 1
0 0

˙

B p2q “

ˆ

0 0
1 0

˙

. (18)

The two components of the vector representations separated by “|” denote the two halves of the represen-
tation vectors, corresponding to the two components of ϕ2 pqq.

High-level idea of Dewdney’s construction. Given these definitions, the intuition behind Dewdney’s
construction of an HRNN simulating an FSA A is the following:

1. Represent A’s states as vectors in B2s, or, equivalently, matrices in Bsˆs.

2. For each q P Q, construct the matrix representation of the set of y-parents B pPar pq, yqq for all
y P Σ.

3. To simulate A’s transition function δ, compare the representation of the current state qt with all
constructed parent matrices B pPar pq, ytqq given the current input symbol yt. Activate the two-hot
representation of the (unique) state qt`1 for which the representation of qt was detected in qt`1’s
parent matrix for symbol yt, B pPar pqt`1, ytqq.

6Despite the notation p. . . | . . .q, we assume we are working with column vectors.
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Figure 3: An example of a fragment of an FSA.

Simulating the transition function of an FSA by detecting preceding states. We elaborate on the last
point above since it is the central part of the construction.7 The idea of simulating the transition function
δ is reduced to detecting whose parent given the current input symbol yt is currently active—naturally,
this should be the state active at t ` 1. Concretely, consider again the FSA A in Fig. 3. The parents of the
three states, indexed by the incoming symbols are: for 0 tb : 2u, for 1 ta : 1, b : 0u, and for 2 ta : 1, b : 0u.
Suppose that at some time t, A is in state 0 and is reading in the symbol b. Then, since the state 0 is the
b-parent of the state 2, we know that at time t ` 1, A will be in state 2. This principle can be applied
more generally: To determine the state of an FSA at time t ` 1, we simply have to somehow detect whose
parent is active at time t given the current input symbol at time t.

The crux of Dewdney’s construction is then the following:8 How do we, using only the Elman update
rule, determine whose yt-parent is active at time t? This can be done by detecting which parent matrix
B pPar pq, ytqq the representation of the current state qt is included in in the sense that if ϕ2 pqtq “ φ, it
holds that B pPar pq, ytqqφ0φ1

“ 1. To be able to formally talk about the detection of a representation in
a set of parents, we define several notions of matrix detection.

Informally, we say that a matrix is easily detectable if the presence of its non-zero elements can be
detected using a single neuron in the hidden layer of a HRNN.

Definition 4.4. Let B P BDˆD be a binary matrix. We say that B is easily detectable if there exist
w P Q2D and b P Q (neuron coefficients) such that

σ pxeij ,wy ` bq “ 1 ðñ Bij “ 1, (19)

where eij “
`

ei | ej
˘

refers to the 2D-dimensional vector with 1’s at positions i and D ` j. In words,
this means that the neuron defined by w, b fires on the input eij if and only if Bij “ 1.

We define detectable matrices as the matrices which can be detected using a conjunction of two
neurons.

Definition 4.5. Let B P BDˆD be a binary matrix. We say that B is detectable if there exist w1,w2 P

Q2D and b1, b2 P Q such that

σ pxeij ,w1y ` b1q “ 1 ^ σ pxeij ,w2y ` b2q “ 1 ðñ Bij “ 1. (20)

Furthermore, we say that a matrix is (easily) permutation-detectable if there exist permutation
matrices P and Q such that PBQ is (easily) detectable.

7Later, we will see that Indyk [1995] uses the exact same idea for simulating δ.
8Again, the same applies to Indyk [1995].
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Intuitively, this means that one can effectively replace an easily detectable matrix B with a single
neuron: Instead of specifying the matrix explicitly, one can simply detect if an entry Bij of B is 1 by
passing eij through the neuron and seeing if it fires. This reduces the space complexity from D2 to 2D.
Similarly, one can replace a detectable matrix with two neurons. As shown in Fact 2.1, the required
conjunction of the two resulting neurons can then easily be performed by a third (small) neuron, meaning
that a detectable matrix is effectively represented by a two-layer MLP.

An example of easily detectable matrices are the so-called northwestern matrices.

Definition 4.6. A matrix B P BDˆD is northwestern if there exists a vector α with |α| “ D and
D ě α1 ě . . . ě αD ě 0 such that

Bij “ 1 ðñ j ď αi. (21)

Intuitively, northwestern matrices contain all their ones contiguously in their upper left (northwest)
corner. An example of a northwestern matrix for α “

`

2 1 1
˘

is

B “

¨

˝

1 1 0
1 0 0
1 0 0

˛

‚. (22)

Lemma 4.1. Northwestern matrices are easily detectable.

Proof. Define
w

def
“
`

α | D . . . 1
˘

and b “ ´D. It is easy to see that for any eij where Bij “ 1, it holds that

xeij ,wy “ αi ` pD ´ j ` 1q ě j ` D ´ j ` 1 “ D ` 1

ùñ H pxeij ,wy ` bq “ H pxeij ,wy ´ Dq “ 1.

On the other hand, for Bij “ 0, we have

xeij ,wy “ αi ` pD ´ j ` 1q ă j ` D ´ j ` 1 “ D

ùñ H pxeij ,wy ` bq “ H pxeij ,wy ´ Dq “ 0.

■

A more general useful class of detectable matrices are line matrices [Dewdney, 1977].

Definition 4.7. A binary matrix B P BDˆD is a line matrix if any of the following conditions hold:

1. All B’s ones lie either in the same row (B is a row matrix) or in the same column (B is a column
matrix).

2. B is a transversal, i.e., a matrix in which there is at most one 1 in any column and row.

Lemma 4.2. Row and column matrices are easily permutation-detectable.

10



Proof. Let i,N P ZD and B be a row matrix with Bijn “ 1 for n P ZN , i.e., a row matrix with all its
ones in the ith row. Define P P BDˆD as P1i “ 1 and 0 elsewhere and Q P BDˆD with Qjnn “ 1 and 0
elsewhere. Then, PBQ contains all its 1 in its northwestern corner (contiguously in the first row) and is
thus easily detectable. Let w def

“
`

α | D . . . 1
˘

, b “ D be the neuron weights from Lemma 4.1.
Define w1 def

“
`

PJα | QpD . . . 1q
˘

, b1 “ D. It is easy to see that this “rearranges” the components
of the neuron recognizing the northwestern matrix PBQ to make them recognize the original matrix,
meaning that the neuron defined by w1 and b1 recognizes the line matrix. The proof for a column matrix
is analogous. ■

Lemma 4.3. Transversals are permutation-detectable.

Proof. The core idea of this proof is that every transversal can be permuted into a diagonal matrix, which
can be written as a Hadamard product of a lower-triangular and an upper-triangular matrix.

Let B be a transversal. Pre-multiplying B with its transpose P
def
“ BJ results in a diagonal matrix.

It is easy to see that PB can be written as a Hadamard product H1 b H2 of a lower-triangular matrix
H1 and an upper-triangular matrix H2. Both are easily permutation detectable. A conjunction of the
neurons detecting H1 and H2 (again, performed by another neuron) detects the original matrix B. In the
following, we will refer to H1 and H2 as the factors of the transversal. ■

Crucially, any binary matrix B P BDˆD can be decomposed into a set of line matrices B whose
disjunction is B:

Ž

MPB M “ B. It is easy to see that Bij “ 1 if and only if there exists M P B such that
Mij “ 1. This means that non-zero entries of any B P BDˆD decomposed into the set of line matrices B
can be detected using an MLP in two steps:

1. Detect the non-zero entries of the individual line matrices from the decomposition B (which are, as
shown above, detectable).

2. Take a disjunction of the detections of the individual line matrices to result in the activation of the
original matrix.

The disjunction can again be performed by applying another 2-layer MLP to the activations of the line
matrices. An important consideration in both Dewdney’s as well as Indyk’s construction later will be how
large B has to be.

Using matrix decomposition and detection for simulating the transition function. We now describe
how Dewdney’s construction uses matrix detection based on the decomposition of matrices into line
matrices to simulate an FSA using an HRNN. From a high level, the update steps of the HRNN will,
just like in Minsky’s construction, simulate the transition function of the simulated FSA. However, in
contrast to the Minsky construction, in which each transition step in the FSA was implemented by a single
application of the Elman update rule, here, a single transition in the FSA will be implemented using
multiple applications of the Elman update rule, the end result of which is the activation of the two-hot
representation of the appropriate next state. Nonetheless, there are, abstractly, two sub-steps of the update
step, analogous to the Minsky construction (cf. Fig. 2):

1. Detect the activations of all possible next states, considering any possible input symbol (performed
by the term Uht in Minsky’s construction).

2. Filter the activations of the next states by choosing only the one transitioned into by a yt-transition
(performed by conjoining with the term VJytK in Minsky’s construction).

11



The novelty of Dewdney’s construction comes in the first sub-step: How can the Elman update step be
used to activate the two-hot representation of qt’s children? As alluded to, this relies on the pre-computed
parent matrices Par pq, yq (cf. Definition 4.2). The parent matrices of individual states are compressed
(disjoined) into component-activating matrices, the representation matrices of the parents of specific sets
of states (cf. Definition 4.3), defined through the function ϕ2 in the following sense.

Definition 4.8. A component-activating matrix is the representation matrix Bj,y,k
def
“ B pPar pΦk,j , yqq

for some k P Zr and j P Z2.

Intuitively, the component-activating matrix Bj,y,k is the result of the disjunction of the matrix
representations of all y-parents q of all states q1 whose jth component of the vector ϕ2 pq1q equals k. This
results in 2|Σ|s matrices. They can be pre-computed and naturally depend on the transition function
δ. The name component-activating matrix is inspired by the fact that each of the matrices “controls”
the activation of one of the 2|Σ|s neurons in a specific sub-vector of the HRNN hidden state. That
is, each component-activating matrix controls a particular dimension, indexed by the tuple pj, y, kq for
j P B, y P Σ, k P Zs, in the data sub-vector of the HRNN hidden state. As we will see shortly, they
contain all the information required for simulating A with a HRNN.

To define the transition function of the HRNN simulating A, all 2|Σ|s component-activating matrices
are decomposed into permutation-detectable line matrices (cf. Definition 4.7) whose activations are
combined (disjoined) into the activations of individual component-activating matrices. Analogously to
above, we will denote the sets of line matrices decomposing the component-activating matrices as Bj,y,k,
i.e., Bj,y,k “

Ž

MPBj,y,k
M. The dimensions of the hidden state corresponding to the activations of the

line matrices before they are combined into the activations of the component-activating matrices form
the processing sub-vector of the HRNN hidden state since they are required in the pre-processing steps
of the update step to determine the activation of the actual hidden state. This is schematically drawn in
Fig. 4a.

For any component-activating matrix B decomposed into the set of line matrices B, we know by
Lemmas 4.2 and 4.3 that all M P B are detectable by a single-layer MLP. By adding an additional layer
to the MLP, we can disjoin the detections of M P B into the detection of B. More abstractly, this MLP,
therefore, detects the activation of one of the 2|Q|s cells of the data sub-vector of the HRNN hidden
state—all of them together then form the two-hot encoding of all possible next states of the FSA (before
taking into account the input symbol). Designing 2|Q|s such single-values MLPs, therefore, results in an
MLP activating the two-hot representations of all possible next states of the simulated FSA. Conjoining
these activations with the input symbol, analogously to how this is done in the Minsky construction,
results in the activation of the two-hot representation of only the actual next state of the simulated FSA.
This is illustrated in Fig. 4b.

High-level overview of simulating a transition. In summary, after decomposing all the component-
activating matrices into the sets Bj,y,k, the detection of all candidate next states (before considering the
input symbol) in the update step of HRNN is composed of the following sub-steps.

1. Compute the activations of the two factors of all the transversals in Bj,y,k for all j, y, k (Lemma 4.3).

2. Conjoin the activations of the two factors into the activations of the transversals (Lemma 4.3).

3. Compute the activations of the column and row matrices in Bj,y,k for all j, y, k (Lemma 4.2).

4. Disjoin of the activations of all the line matrices (transversals, row, and column matrices) in Bj,y,k

for all x, y, k to compute the activations of all 2|Σ|s component-activatimg matrices.
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(a) High-level overview of Dewdney’s construction. The highlighted orange neuron in the representation of the
state from the data sub-vector corresponds to the activation of one of the components of the red states (which have
in common that their 0th component of ϕ2 pqq is the same). The matrix corresponding to the disjunction of the
representations of their y-parents (blue states) is decomposed into two line matrices—a transversal and a column
matrix. The non-zero elements of the former can be detected by a conjunction of two neurons while the non-zero
elements of the latter can be detected directly by a single neuron. Those activations are then disjoined to result in the
activation in the orange neuron. The purple neurons in the processing sub-vector are composed of the neurons in the
networks implementing the detection of line matrices and their conjunctions and disjunctions (also shown in purple).
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˙
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(b) A high-level illustration of how the transition function of the FSA is implemented in Dewdney’s construction on
an example of an FSA fragment, where the simulated automaton is initially in the state q and reads the symbol a,
transitioning to q1. The components whose changes are relevant at a given step are highlighted. Starting in the state q,
which is stored in the data sub-vector v pqq, in the first sub-step, the processing bits of the appropriate line matrices
are activated (p1). Next, the activated line matrices are used to activate the representations of all of q’s children in the
data sub-vector (v

`␣

q1, q2
(˘

). Lastly, these representations are conjoined with the states reachable by the symbol a,
resulting in the representation of the state q in the data sub-vector (v pqq).
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This results in the activation of the two-hot representations of all possible next states (i.e., all children
of qt). In the last sub-step of the HRNN update step, these are conjoined with the representation of the
current input symbol. This step is very similar to the analogous stage in Minsky’s construction, with the
difference that here, the non-zero entries of the vector Vht must cover the two-hot representations of the
states with an incoming yt-transition. This conjunction then ensures that among all the children of qt,
only the one reached by taking the yt-transition will be encoded in ht`1. The construction just described
can be summarized by the following lemma.

Lemma 4.4. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. Then, Dewdney’s construction results in a
HRNN correctly simulating A’s transition function, i.e, sphtq “ qt for all t.

Proof. The proof follows the reasoning on the activation of appropriate matrices according to the transition
function of the FSA outlined above. To formally prove the lemma, we would have to follow a similar
set of steps to how the correctness of Minsky’s construction (Lemma 3.1) was proved. We omit this for
conciseness. ■

This shows that Dewdeny’s construction correctly encodes the FSA in a HRNN. However, its space
efficiency remains to be determined. As mentioned above, working with two-hot representations of the
states means that the data sub-vector is of size O

´

|Σ|
a

|Q|

¯

. However, the construction also requires a
number of processing dimensions in the processing sub-vector. To understand the full complexity of the
construction, we have to determine the maximal number of processing bits in the HRNN. The first step to
the answer is contained in the following lemma, which describes the number of line matrices required to
cover an arbitrary binary matrix. It lies in the core of the efficiency of Dewdney’s construction.

Lemma 4.5. Let B P BDˆD with N2 elements equalling 1. Then, there exists a decomposition B of B
into at most 2N line matrices such that

Ž

MPB M “ B.

Proof. Based on Dewdney [1977].9 Define the sequence of transversals T1,T2, . . . where Ti is the
transversal containing the maximum number of ones in the matrix Bi

def
“ B ´

Ži´1
j“1 Bj . The transversal

containing the maximal number of ones can be found using the maximum matching algorithm. Continue
this sequence until there are no more ones in Bi. The number of ones in the matrices Bi, ∥Bi∥1, forms a
(weakly) decreasing sequence.

If there are at most 2N transversals in the sequence, the lemma holds. Otherwise, we compare the
functions f piq

def
“ ∥Ti∥1 and g piq

def
“ 2N ´ i.

• If f piq ą g piq for all i “ 1, . . . , N , then
řN

i“1 f piq “
řN

i“1 ∥Ti∥1 ą
řN

i“1 2N ´ i “ 2N2 ´
1
2NpN ` 1q ě N2. However, the transversals in the decomponsition cannot contain more ones
than the original matrix.

• We conclude that for some i ď N , f piq ď g piq. Let i0 be the first such index in 1, . . . , N and
L1

def
“ tT1, . . . ,Tku. Since the maximum number of independent ones (in the sense that at most

one appears in a single row/column) in Bi0´1 is ∥Ti0∥1 ď 2N ´ i0 (those are chosen by the
maximum transversal Ti0 ). By König’s theorem [Szárnyas, 2020], there is a set of at most 2N ´ i0
column or row matrices L2

def
“ tL1, . . .Lku with k ď 2N ´ i0 which cover Bi0´1.10 Therefore,

L def
“ L1 Y L2 constitutes a valid cover of B with ď N ` 2N ´ i0 “ O pNq matrices.

9The proof in Dewdney [1977] contains a mistake that affects the constant, but not the big-O complexity of the space complexity.
It is fixed in this proof.

10Intuitively, since all ones are contained within ď 2N ´ i0 rows or columns, they can be simply covered by matrices containing
those.
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■

We will denote the number of matrices in the line decomposition of a matrix B constructed by
the greedy procedure from Lemma 4.5 as L pBq. Connecting this lemma to Dewdney’s construction,
this shows that the number of neurons required to detect the activation of a single set Par pk, yq grows
asymptotically as the square root of the number of ones in the representation matrix B pPar pk, yqq—this
is how many line matrices the matrix will decompose into. The size of each neuron is 2|Σ|s.

This allows us to show how many neurons the entire HRNN simulating A has. Since we know that
the data sub-vector will always have exactly 2|Σ|s cells, we characterize the number of processing cells
in the following lemma.

Lemma 4.6. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. Then, Dewdney’s construction results in a

HRNN with a hidden state of size O
´

|Σ||Q|
3
4

¯

.

Proof. The number of cells in the entire processing sub-vector is simply the sum of the processing
neurons of all the data components. In the worst case, a single component-activating matrix B requires
2L pBq ` 1 neurons (2 for each transversal in the decomposition of B and an additional one for their
disjunction). Therefore, enumerating the set of matrices tBj,y,k | j P Z2, y P Σ, k P Zsu with Bn for
n “ 1, . . . , 2|Σ|s, the number of neurons required by all component-activating matrices is bounded as
follows.

2|Σ|s
ÿ

n“1

2L pBnq ` 1 ď

2|Σ|s
ÿ

n“1

2
´

2r

b

∥Bn∥1s

¯

` 1
def
“

2|Σ|s
ÿ

n“1

4mn ` 1 (23)

Since the matrices Bn contain one non-zero entry for each state-symbol pair, it holds that

2|Σ|s
ÿ

n“1

∥Bn∥1 ď

2|Σ|s
ÿ

n“1

m2
n “ |Σ||Q| (24)

Pretending that mn can take real values, the value of Eq. (23) is maximized under the constraint from
Eq. (24) when all mn are equal with mn “

?
2s. This means that

2|Σ|s
ÿ

n“1

4mn ` 1 ď

2|Σ|s
ÿ

n“1

4
?
2s ` 1 “ 8|Σ|s

?
2s ` 1 “ O

´

|Σ||Q|
3
4

¯

, (25)

finishing the proof. ■

All results stated in this section can be summarized in the following theorem.

Theorem 4.1. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. Then, there exists a HRNN of size

O
´

|Σ||Q|
3
4

¯

correctly simulating A.

Proof. The existence of the RNN follows from the discussion on detectable matrices and Lemma 4.4
while the space bound is guaranteed by Lemma 4.6. ■
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5 Indyk’s Construction

§4 describes a construction of an HRNN of size O
´

|Σ||Q|
3
4

¯

simulating an FSA. While this improves
the space efficiency compared to Minsky’s construction, it is not asymptotically optimal. Indyk [1995]
proved that a HRNN simulating an FSA A “ pΣ, Q, I, F, δq over a binary alphabet Σ “ B requires at
least Ω

´

a

|Q|

¯

hidden dimensions. He also provided a construction that achieves this lower bound.
This construction is conceptually very similar to Dewdney’s in that it works by activating neurons
corresponding to some form of compressed parent matrices (component-activating matrices) and then
selecting the transition which matches the input symbol. Again, it additively covers these matrices with
components that are easy to detect, similar to how Dewdney’s construction uses line matrices. However,
Indyk’s construction defines component-activating matrices based on different sets of states and covers
them with a different decomposition—these are the two crucial differences allowing the construction to
achieve the optimal lower bound.

We first define the component-activating matrices and their role in updating the hidden state of the
HRNN. In Indyk’s construction, the component-activating matrices are based on four-hot rather than
two-hot encodings of states.

Definition 5.1. Let A “ pΣ, Q, I, F, δq be an FSA, r def
“ r|Q|

1
4 s, and ρ a permutation of Q “ r|Q|s.11 We

define the four-hot representation of q P Q as

ϕ4pqq “ pℓ1, ℓ2, ℓ3, ℓ4q (26)

where

ℓj “
ρ pqq

rj´1
mod r. (27)

We denote the inverse of ϕ4 with ϕ´1
4 and further define for k P Zr

ϕ´1
4 pk, ¨, ¨, ¨q

def
“ tq P Q | ϕ4 pqq1 “ ku (28)

and ϕ´1
4 p¨, k, ¨, ¨q, ϕ´1

4 p¨, ¨, k, ¨q, and ϕ´1
4 p¨, ¨, ¨, kq analogously.

We will denote ϕ´1
4 p. . . , k, . . .q with k in jth position (with j P Z4) as Φk,j . Despite using the

four-hot representations, Indyk’s construction still requires the two-hot representations based on ϕ2 as
before. In this case, however, they again depend on the chosen permutation ρ. This allows us to define the
component-activating matrices as follows.

Definition 5.2. A component-activating matrix in Indyk’s construction is the representation matrix
B pPar pΦk,j , yqq for some k P Zr, j P Z4, and y P Σ.

For efficient detection, the component-activating matrices are covered by so-called non-decreasing
matrices.

Definition 5.3. We say that B P BDˆD is non-decreasing if there exists a non-decreasing (partial)
function f : ZD Ñ ZD (from columns to rows) such that

Bij “ 1 ðñ f pjq “ i (29)

and, if f is defined for some j P ZD, it is also defined for all j1 ě j.
11The exact form of ρ will be important later. For now, one can think of ρ as the identity function.
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Example 5.1. An example of a non-decreasing matrix is

B “

¨

˚

˚

˝

0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

˛

‹

‹

‚

. (30)

The function f defining the non-decreasing matrix B is f “

ˆ

0 1 2 3
H 0 1 1

˙

, where H denotes that the

function is not defined.

Again, clearly, any matrix B P BDˆD can be (non-uniquely) decomposed into at most D non-
decreasing matrices. Moreover, non-decreasing matrices are detectable.

Lemma 5.1. Non-decreasing matrices are detectable.

Proof. Let B P BDˆD be a non-decreasing matrix defined by the partial function f . Divide the domain
of f into the set of intervals in which the function is constant, with Ipjq denoting the interval of j P Zr2

for j such that f pjq is defined. Then, it is easy to see that Bij “ 1 ðñ i “ f pjq, meaning that by
defining the parameters w and b as

wfpjq
def
“ r2 ´ I pjq (31)

wr2`j
def
“ Ipjq (32)

b
def
“ ´r2 (33)

and other elements as 0, we get that

Bij “ 1 ðñ i “ f pjq ðñ wi ` wj ` b “ 0. (34)

Compared to earlier, where component-activating matrices were detected by testing an inequality,
detecting a non-decreasing matrix requires testing an equality. Since all terms in the equality are integers,
testing the equality can be performed with the Heaviside activation function by conjoining two neurons;
one testing the inequality wi `wj ` b´1 ă 0 and another one testing the inequality wi `wj ` b`1 ą 0.
Both can individually be performed by a single neuron and then conjoined by an additional one. ■

With this, the high-level idea of Indyk’s construction is outlined in Fig. 5. After constructing the
component-activating matrices based on ϕ4 and decomposing them into non-decreasing matrices, the
rest of Indyk’s construction is very similar to Dewdney’s construction, although the full update step of
the HRNN requires some additional processing. To test the equality needed to detect non-decreasing
matrices in the decomposition, Eq. (34), the four-hot representations are first converted into two-hot ones.
This can be done by a simple conjunction of the first two and the last two components of the four-hot
representation. Then, the activations of the non-decreasing matrices can be computed and disjoined into
the representations of the component-activating matrices. These form the 4|Σ|r components of the data
sub-vector of the HRNN hidden state. They contain the activations of all possible next states, i.e., the
children of the current state of A. These are then conjoined with the representation of the current input
symbol in the same way as in Dewdney’s construction but adapted to the four-hot representations of the
states. The process is thus very similar to the phases of Dewdeney’s construction illustrated in Fig. 4b.

Indyk’s construction can be summarized by the following lemma.

17



Lemma 5.2. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. Then, Indyk’s construction results in a
HRNN correctly simulating A’s transition function, i.e, sphtq “ qt for all t.

Proof. Again, the proof follows the reasoning outlined above, and, to formally prove it is correct, we
would have to follow a similar set of steps to how the correctness of Minsky’s construction (Lemma 3.1)
was proved. We omit this for conciseness. ■

The only remaining thing to show is that Indyk’s construction achieves the theoretically optimal lower
bound on the size of the HRNN simulating a deterministic FSA. All previous steps of the construction
were valid no matter the chosen permutation ρ. The permutation, however, matters for space efficiency:
Intuitively, it determines how efficiently one can decompose the resulting component-activating matrices
(which depend on the permutation) into non-decreasing matrices in the sense of how many non-decreasing
matrices are required to cover it. Indyk, therefore, proved that there always exists, with non-zero
probability, a permutation in which the decomposition across all states is efficient enough to achieve the
minimum number of neurons required. This is formalized by the following lemma.

Lemma 5.3. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. There exists a permutation of Q such that

Indyk’s construction results in a HRNN of size O
´

|Σ|
a

|Q|

¯

.

Proof. The proof can be found in Indyk [1995, Lemma 6]. ■

This concludes our presentation of Indyk’s construction. All results stated in this section can be
summarized by the following theorem.

Theorem 5.1. Let A “ pΣ, Q, I, F, δq be a deterministic FSA. There exists a HRNN of size O
´

|Σ|
a

|Q|

¯

correctly simulating A.

Proof. Again, the proof follows from the fact that Indyk’s construction correctly simulates the FSA (cf.
Lemma 5.2) while the space bound is guaranteed by Lemma 5.3. ■

6 Conclusion
We presented three classical constructions of an RNN with the Heaviside activation function simulating
a finite-state automaton. Given an FSA with N states, Minsky’s [1954] construction defines an RNN
with neurons, Dewdney’s [1977] construction an RNN with O

´

N
3
4

¯

, and Indyk’s [1995] construction an

RNN with O
`
?
N
˘

neurons. The latter is optimal in the general case—there exist FSAs which cannot be
simulate correctly by an RNN with fewer neurons. The question of how these constructions translate to the
case of weighted FSAs was addressed by Svete and Cotterell [2023], who show that Minsky’s construction
is in some ways optimal in the weighted case, since an RNN simulating a weighted FSA might require
Ω pNq neurons. We hope the review sparks further research into relationship between formal models of
computation and modern neural architectures, helping us understand the complex architectures in terms
of well-understood formalisms.
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Figure 5: High-level overview of Indyk’s construction. The highlighted orange neuron in the representation
of the state from the data sub-vector corresponds to the activation of one of the components of the red states
(which have in common that their 0th component of ϕ4 pqq is the same). The matrix corresponding to the
disjunction of the representations of their y-parents (blue states) is decomposed into two non-decreasing
matrices. The non-zero elements of both can be detected by a conjunction of two neurons; here, f1 “
ˆ

0 1 2 3
H 0 0 0

˙

and f2 “

ˆ

0 1 2 3
H H 1 2

˙

, meaning that w1 “
`

3 0 0 0 | 0 1 1 1
˘

,

w2 “
`

0 3 2 0 | 0 0 1 2
˘

, and b1 “ b2 “ 4. Those activations are then disjoined to result
in the activation in the orange neuron. The purple neurons in the processing sub-vector are composed
of the neurons in the networks implementing the detection of line matrices and their conjunctions and
disjunctions (also shown in purple). Note that even if the second matrix were not non-decreasing in itself
(i.e., the columns of the two ones would be flipped), one could still transform it into a non-decreasing
matrix by permuting the columns and permuting the corresponding neurons.
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